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PREFACE

I am greatly indebted to the National Institute for Social and Eeonomie
Research for putting at my disposal sufficient computational assistance to
enable me to work out a few ideas on the analysis of oscillatory seties which
are presented in the following pages. It hardly needs to be stated that this
is only a small contribution to a very large subject, but 1 hope that the
conclusions which are reached will do something tow&rd,s\cioarmg the
ground for further research and will arouse interest among statisticians in
a wide field awaiting their closer attention.

My thanks are specially due to Miss Muriel Pottw and Miss Liysbeth
Holbrook of the Institute who did much of the dontputing.

"This booklet was sent to press some months age, and in the meantime the
restrictions on disclosure of information Whj{:‘}fkfﬂight be useful to the enemy
have heen removed. In particular, the vi}riéus instruments and machines
constructed during the war for corre}dglam analysis are no longer secret.
An account of some of these is.giwen in a symposium introduced by
Dr Bartlett, Dr Cunningham, Mg Hynd and Mr Foster before the Research
Section of the Royal Statistiéa} Society on 29th January 1946. The papers
and discussions on that oetasion will be published in the Supplement to the
Society’s Journal and conttain much that is relevant to the further study
of some of the proplems touched on herein.

RS N M. G K.
LoNpDoON ,~\’:.\“
February 15{ \d
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CHAPTER 1
INTRODUCTION

1-1. The following pages give an account of some researches, mainly
experimental, into the adequacy of current methods of investigating oscil-
latory movements in time-series. It is not mpy purpose to give a connected
account of those methods or to describe previous work in any detail; but
in order to make the results intelligible without a lot of back-reference I
give this brief infroductory account. The reader who is unwilliag to grapple
with the statistical and mathematical analtysis of Chapters 2-6 will, I hope,
be able to get some general idea of the reason for the inquiry and its Impact
on the study of time-geries by reading this chapter in con]uncta.on with
Chapter 7. N

"
Definitions

1-2. 1 shall throughout consider ‘stationary’ sgrieé,"th&t is to say series
with no trend present and with a degree of vaziation which does not alter
systematically with time—the fluctuation is suppdsed not to get systematic-
ally bigger or smaller as we go along the geries. As a maiter of practical
" convenience the mean value of the series.dsg usnally taken to be zero without
loss of generality. T shall also confine atiféntion to series which are defined at
equidistant intervals of time, w. johMmay be taken as our fime units. The
nth term of the series will be written =, and our series consists of the sequence
of values wy, %y, Hg, ... Somét es we requiré to consider past history
measured from the poinjs@.:’: I and can then write the previous terms as

Mgy Uy W, Mgy eeuy gt

1-3. By a ‘peakl OF the series T mean a value which is greater than the
two nelghbourmg\\values, by a ‘trough’ a value which is less than the two
neighbouring w;lues Tf a number of successive maximal values are equal
they will be\regarded as defining one peak located half-way between the
first and\the last.

1-4. By an ‘upcross’ I mean the point at which the series, measured
about its mean, changes sign from negative to positive; and similarly, by a
‘downeross’ the point at which it changes sign from positive to negative.
Since, in our present convention, the series is defined at equidistant intervals
the upeross and downeross will lie between integral values of the time unit,
and conventionally we shall regard the crosses as half-way between neigh-
houring points of opposite sign. For instance, if the series is positive at{ = 4
and negative at t = 5 we shall regard the downeross as located at ¢ = 4-5.

EQM I



2 . "THE 8TUDY OF OSCILLATORY TIME-SERIES

This may be a slight approximation but does not affect the accuracy of the
work to any material extent.

-Xf a series passes from positive to zero values and then to positive again
without becoming negative the points will not be regarded as defining an
upcross and a downcross; and similarly for values proceding from negative
to zero and again to negative. But if the series proceeds from positive to
zero and then to negative, the point at which it is zero will be regarded as a
downcross. If there are several consecutive zeros the downcross will be
located half-way between the first and the last., .

1-5. We now come to a more difficult question of definition: what do
we mean by a period in a time-series? Most economists, I think; Rdopt the
natural but rather crude method of measuring the average digbance between
peaks or between troughs. Such a measure I shall call the mean-disiance
{peaks) or mean-distance (troughs) as the case may be. I ,sha]l interpret this
definition strictly by including all peaks or troughs it the count. There is
a very dangerous tendency, in counting peakssiuda series {dealt with in
Chapter 7), to ignore certain peaks which do notlook very important. This
involves a substantial element of subjectife}judgment ag to what is ‘im-
portant’ and is, from the scientific viewp(}iﬁt, indefensible valess it can be
shown that the peaks fall into two Wél]’—i:narked groups, major and minor.
Series for which this is so are the Bﬁc’eption rather than the rule.

1:6. There are certain more\Sophisticated definitions of ‘periods’ in
time series which are a,ssoc:arbed with the mathematical methods used to
detect them. For instance,"harmonic or periodogram analysis secks to
exhibit the series as a swm of ceTtain sine or cosine terms, and the periods of
these terms are knqv%a as the ‘periods’ of the series. To distinguish these
elements 1 shall refer to them as harmonic periods.

1-7.  Again{ the method of correlogram analysis seeks to detect periodic
elements biy@)}a;mmmg fluctuations in the correlogram. A period identified
in this way I shall call the correlogram period. Similarly, & basic period of a
solutmn of an autoregressive scheme will be called an aquforegressive
pe«w&

¥-8. It is of the first importance to draw these dlstmcmons because of
the confusion which has arisen in the past (and is still arising at present}
among various writers who do not define their terms clearly, or indeed at all.
Possibly thiz has been due to the helief that the various definitions are
equivalent in the sense, for example, that the mean-distance (peaks) is the
same as the harmonic period of a series with a single harmonic. In general,
such a belief has no foundation in fact. Whether one finds ‘periods’ in &

* Hitherto Yule and I have called this the fundamental period of the anforegressive scheme.
Ag this may be held to be tendentious, there being nothing particular to mark out this
periad as more fundamental than ot.hers T consider it preferable to adopt the neutral ter-
minology proposed above.



INTRODUCTION 3

series and if so what are their ‘lengths’ is to a great extent dependent on
how one defines them.

19. A further pointto be made in this connection is that many observed
time series (one might almost say most series) do not exhibit a regular
recurrence of peaks, troughs or upcrosses. The intervals between successive
maxima in economic series, for example, are not equal but show very sub-
stantial variation. We cannot, then, speak of the period. of a series, since it
possesses a whole distribution of intervals between successive events of a
~ similar kind. This is my reason for speaking of mean-distance in this con-
nection. The harmonic periods, the correlogram periods and the agto-
regressive periods are unigque in themselves, but again they cannot do'hore
than summarize within the compass of single numbers the, espential
variation in the oscillatory behaviour of the series. In statisticd] Janguage,
they are measures of location of the frequency distribufion pf:intervals.

1:10. It is for such reasons that I shall avoid a,lt\uogether the word
‘oycle’, which carries with it a connotation of regllagity of recurrence.
Sir William Beveridge ([4], p. 285) differs from this vies and congiders that
whatever the etymological origins of the word, if’has now come to have a
more general significance. He proposes to use'the'word ‘period’ in the sense
of strich regularity of recurrence. He may beight as to the understanding
of the word *cycle’ by economists but net, I think, as to the interpretation
usually put upon it in the exact sqieﬁéés when a temporal element is in-
volved,* The systematic (but not hecessarily cyelic) recurrence of pheno-
mena in time series I shall cali “oscillation’. The more general stationary
movement, whether systematié or not, I shall refer to as a ‘fluctuation’.
In this sense an osci]latim%a particular case of fluctuation and a cycle is
a particular case¢ of gs.\ci]ié,tion. A periodic series is & particular case of a
cyclic series, but if the occasion arises we may, in the usual mathematical
terminology, describe a cyclic series as ‘almost’ periodic if it consists of the
sum of a numper of periodic terms with incommensurable periods.
Ourreyzmj?;e}?iods of analysing oscillatory series

1-11) There are three main methods of studying oscillatory effects in
time series:

(@) the method of counting peaks, troughs or crosses which has already
been mentioned; I shall consider this method in Chapter 6;

(b) periodogram analysis, dealt with in Chapter 4;

* Rir William does say that he uses ‘cycla’ aa when we speak of the ‘life cycle’ of a species
—a regular succession of identifiable phases. It can be justified by showing in all the waves
uniformities so important as to make a similar pattern for sach of them and point to &
persistent underlying cause’. I do not want to wrangle over questions of terminology, but

this seems to me to beg the question, Cyelical movements in Bir William’s sense can be
generated by random effests without any persistent underlying cause.

I-2



4 THE STUDY OF OSCILLATORY TIME-SERIES

(¢) correlogram analysis, some aspects of which are dealt with in
Chapter 3. ' .

I shall also examine in Chapter 5 some aspects of

(d) variate-differencing, which purports to detect and estimate the
magnitude of random elements superposed on a systematic movement.

1-12. The fundamental idea of periodogram analysis may be briefly

explained in this way: suppose we wish to test a series to see whether it
contains a period of length p. We write down the series in rows of p:

Uy Uy, e Wy
Upia Upt2 ne e e Uy
(1-1)
. N
u‘(m—ﬂj]-l—-l u(m—]J_'p+2 AL = ump (\AH
- .’\ ”
Totals o, U, ‘U@*‘

If the number of terms & in the series is not an péciét multiple of p we
ignore the few that are left over after writing dowmas many rows as possible.

If there is present a term of period p in theseries, the column totals T
will cumulate the periodic effect; but if the yefhdining element is random, the
effect of summing m rows will be to reduds,the relative contribution of that
element to the column totals, and simﬂérfy if there are other elements with
different periods they will get outwbf step in successive rows and tend to
cancel out in the totals. Hen(;e:,}ijf'there are enough rows, we may expect
thaf the totals T will reveal 1;1{6 periodic effect and will reduce any masking
effects due to random cofhponents or oscillatory components of different
periods which would have prevented us from discerning it in the primary
series. N\

1-13. The talil® of equation {1-1} is known as the Buys-Ballot table.
Following Schagteér (151, but withsome changes of notation, we form the sumas:

"\u .
4 2 7t o
O A - (g _-?) .
S (P) = j_i__au( A E (1:2)
N\ 2 221 . 27
O Bp)=_— % (UJ-HSm—?Tg), (1-3)
o . . P i=0 p .
“ad form the tniensily .
I(p) = 42+ B2 . (1-4)

There is a value of {(p) corresponding to each trial period p, and if we
calculate a set of values for a certain range of trial periods we have what is
known as a periodogram analysis, The graph of I(p) as ordinate against p
as abscissa is called the periodogram.

1-14. There are a few variants of these formulae which need not be
noticed here, and it may be remarked that the method may be extended to
give the intensity for rational non-integral trial periods. One useful modi-
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fication of the above formula (1-4) is to divide the intensity by twice the

variance of the primary series:
I

= 1-5
2varu’ (1-5)

$0 as to standardize it and permit of the comparison of different periodo-
grams, The factor 2 is introduced for reasons connected with Fourier
analysis.

1-15. In effect, what Schuster’s method does is to find the correlation
_ between the primary series and a harmonic term of period p. 1f this correla-
tion is higher than for neighbouring trial pericds there occurs a peak in the
periodogram; and in particular, if the primary series contains = harmonic
term of period p the periodogram should exhibit & peak of width 2p*/(mp).
The Schuster technique consists essentially of examining the periodogram
for peaks, dismissing minor ones as side-bands of the main peaks or as
sampling effects, and attributing to each remaining pe}fk a constituent
harmonic term of corresponding period in the primarg s ries.

1-16. There have been several modifications of S¢huster’s method pro-
posed, mainly with the object of obviating thgjﬁfher tedious arithmetic
which is involved. All those I have seen are.no better than indifferent
approximations, and some of them are not éven that. An attempt of rather
a different kind was made by Whittake{39], who derives from the column
totals U in the Buys-Ballot table an]ahétion :

oo, var (U)m)
AT varu

Y

(1-6)

e

and constructs a diagram }S(\g'i'aphing nagainst p, a figure which he also calls
a periodogram. He shows'that if the primary series contains a harmonic of
period p and the reméiﬁing constituents of the series are uncorrelated with
this texm there is\'a;}Jéak in his version of the periodogram at the trial value
p. Butit docshbt follow that if there is a peak there is any periodicity in the
data, as is.e{rident from the consideration that # is independent of the order
of the,aui;ﬂé,'U in the Buys-Baliot table. For this reason alone, 1 regard the
Whifbaker periodogram as unsatisfactory. A practical example is given
later (4-5).

Correlogram analysis

1-17. The cocfficient of product-moment correlation between members
of the series k intervals apart is called the serial correlation of order £. For
the infinite series we have the corresponding autocorrelation

__cov (965, ;. 7)

P =" _;:aru : (]_'7)
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and for the finite series
Nk

PARILIY
j=1

o= ‘N—vk

B — (1-8)
5 04) % ()
=1 =i

* where the values of » are measured about their mean. For every k we may

compute a value of r;, and the diagram obtained by graphing r, as ordinate
against k as abscissa is called the correlogram. Ifthe primary seriesis a sum
of harmonics the correlogram will also consist of a sum of harmonics of the
same periods as the original but with different relative amplitudes. On the
other hand, if the series is autoregressive the correlogram show damped
oscillations, and in particular if the series is generated by a mMowing average
‘of finite extent the serial correlations vanish after a certaid order, within
sampling limits. The correlogram thus provides a eriterion.for determining
the nature of the oscillations. Or ak least it would do so. fof'a;n infinite series;
the correlogram of a finite series is more difficult todnterpres.

1-18. For an infinite series everywhere definddhe correlogram and the
periodogram are mathematically related, ong being a kind of Fourier trans-
form of the other (cf. Davis(6], p. 112). Wehould thus hardly expect them
to give apparently inconsistent results forpractical series of any great length,
It will, nevertheless, he shown later $hat they can do so and that the differ-
ences are very serious for certaigtﬁybés of series.

Variate-differences

1-19. Ifa series consjsts of a systematic component which can be repre-
sented (at least locally)\by a smooth function such a polynomial, together
with & random conipenent, we may obtain an estimate of the variance of
the latter from %he' successive differences of the series. If, in fact, such a
series is diﬂ'qrelicéd % times the systematic element is reduced to very small
proportions and the random element has its variance increased by a factor

%}, The Variate-difference technique congists of taking the successive
djﬁ"e;epéés, ascertaining the mean-square of kth differences, dividing by
(8 $0 give the ‘reduced’ variances V, and examining the run of values
of the quotient for k= 1,2,3, ..., ete. At some point (nsually guite a low
value of k) the quotients show signs of tending to a limit; and this limiting
value iz taken to be an estimate of the variance of the random component,

I consider the application of this method o autoregressive time geries
in Chapter 5.

Models of an oscillatory series

1-20. The older methods of detecting oscillatory . movements were
baged essentially on attempts to exhibit the series as & sum of periodic
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terms, usually sine or cosine expansions. If the fit between theory and
observation was not perfect {and as a rule, for economic series, it was not
even good) the differences were treated as errors of observation. That is to
say, any discrepancy was regarded as a purely temporary aberration which
disappeared after occurrence without affecting the future motion of the system.

1-21. In economic terms this involved regarding an economic system as
vibrating, either under its own internal elastic forces or under the stimulus
of some external rhythm, with unchangeable period, amplitude and phase.

" No casual events, however severe their incidence, could alter this scheme
unless they were so severe as to disrupt the fundamental structure of the
system. The divergences from the strictly periodic scheme were as yepiote
from its essential behaviour as the astronomer’s errors of obsexvation are
from the stars which he contemplates. Attempts to represdfit*economic
series by schemes of this kind were being made as late as :1‘9'.36', and for all
I know may be going on to-day. D

1-22. 1In the meantime it was being slowly realizéd that models of the
periodic kind could not adequately represent observed series without great
artificiality. It is, of course, always possible/to” represent any scheme
exactly by taking enough harmonic terms,jiist as any function defined at
a finite number of points can be represented bj% a polynomialif again enough
terms are taken. But the hypotheses on'i%hich the periodic scheme is based
are neither plausibleé ¢ prior: nor y‘eiiﬁed by observation. It is typical of
economic series that they vary “substantially in the intervals between
successive peaks, that the amglitude of oscillations vary to much the same
extent, and that there is.rpﬁt’endency for movements to remain in phase.
TFurthermore, when a dist}rbance ocours it is not forgotten but continues to
exert some effect on the'future. It may be ‘random’ in the sense that its
gceurrence is quiﬁe\ﬁnpredjcta,ble and that it forms a member of a distribu-
tion of disturbanées which affect the system casuelly from time to time.
But onece it kagappeared it is incorporated into the system and influences its
Sfuture motion.

1-23:) JThis concepfion forms the starting point of the modern theory of
oscillabOry time-series, which we owe mainly to the work of Udny
Yulel21, 22,23], )

Yule considers a system which is capable of damped oscillations under
its own internal forces but is subjected to a stream of external shocks which
continually regenerate the oscillations. The qualities of the system itself
are supposed to be expressible by the fact that the value at any point of time
is a function of the values at previous points, and the shocks by a disturbance
funiction which may be a random variable. Such a system I call auto-
regressive. For the case of a series defined at equidistant intervals of time

we may write  Uym = Flog, gy ooy W 1)+ Epp s {1-9)
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where ¢ is the disturbance function. In particular, we have the linear auto-
regresgive scheme

Uyt 01Uy gt o U= 6y, (1-10)
which hag been used by Yule himself[23] on sunspot numbers, by Walker{18]
on barometric pressure, and by myself[9] on agricultural prices, acreages,
crop yields and livestock numbers. Yule and I found that our series were
stfficiently closely represented by the simple form

Upyg + BUy g + by = € s (1-11)

which I have used for the experiments described later.

1-24. Ttis not contended that the autoregressive scheme is.theonly one
which will permit of the incorporation of disturbances into the'system as
they occur, or that it is the best scheme. Tt is a possible scheme! It is eagily
understandable in economie terms. It can be subjected ¥0 mathematical
analysis. Its properties can be examined experimentally. It provides at
least an approximation o the series. But perhapd better schemes will be
devised as we progress in this difficult subjects ¥et the present it seems to
me to provide the best model of actual behayiour which has yet been pro-
posed, and the work described in thig brp’qhure is intended to throw some

light on its properties. P

S

Experimental series N

1-25. Owing to the uncerta.ﬁ;’ty; of the true nature of observed economic
series I felt it desirable tq.‘wb’fk with artificial series about whose nature
there could be no doubj.\Four such series were constructed according to
equation (1-11) for partieular values of @ and . The disturbance fanetion
‘was in each case taken'to be a random variable.* ‘

Series 1 was ¢afistructed according to the formuls,

2 Uy = 1- 1oy, — OBy +eg, _ {1-12)
(& =— 1:§b'= 0-5). It comprises 480 terms. The element ¢ was obtained
by tak:n:g two-figuro numbers from the Tables of Random Sampling Numbers
by Babington Smith and myself[12]. The table on p. 9 illustrates the
Provess.

Colurun (1) gives the values of the random numbers ag taken from p. 2
of the tables (the number 00 being ignored so that the values range from
1o 99). Column {2) shows the values of column (1) less 50, and thus reduces
the element to one with a range from — 4940 + 49 and zero mean. Column (3)
is obtained by applying equation (1-12), for instance the first term is

(1'1)(— 85) — (0-5) {— 27) +- 26 = 0,
* If the series is fo be stationary it is necessary that b should be positive and should not

exceed unity. Furthermore, ? must be less than 45 so that e cannot excesd 2 in shaolute
value. If ¢ is negative the series has an matoregressive period less than 4 units, as in series 4.
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and the second (1-1} (0) ~ (0-5) (— 35) — 2 = 15°5.

These two values “start up’ the series. The third value is then
(1-1) (15-5) — (0-5) {0) + 9 = 26-05,
and so on. The final values were rounded off to the nearest unit.

YA (2) 3 {4)

23 —27
15 ~35

75 25 0 0
43 -2 16:5 15
59 9 26:05° 26

1 —49 —28-09 —28 ~
83 33 —10:92 -11

72 22 24.03 24 A
59 9 40-89 41 LN
93 43 75-96 16
6 26 5011 \BO
24 —26 3404 I i
97 47 39-80 AN 40

8 —42 -15-14 (V-1

86 36 — 0-60 S -1
95 45 51-91 ¢ 52
23 —27 30-40 N 30

3 —47 - 3951, —40
67 17 —41. —49
44 -8 380y 32

Series 2, this time of 240 terms, was co,néﬁructed according to the formula

Uy = 1 2“:-{:1* 0+ 4ty €75 (1-13)
Series 3, also of 240 terms, wad reonstracted according to the formula
%g*“—,\l']%t—mt— OBty -+ 6, 5. ' (1-14)
Finally, series 4, also of 240 terms, had the formula
Sy = — g — OBty gy, : (1-15)

In each case the.xéi;xa_om function ¢ was taken from the tables of random
numbhers (dj.%lm% sets, of course, being used for different series) and the
series constulie ed in the manner exemplified above.
1-26. The four series are shown in Tables 1-1-1-4. As they are rather
too to permit of bheing legibly graphed on a page of this size I have
the first 100 terms only of each series in Figs, 1-1-1-4. Certain con-
stants of these series will continually be required and are brought together
in Table 1-5,
The means, variances and standard deviations in Table 1:5 are those of -
the observed series. The autoregressive periods are the values for a series of
infinite length with the constants ¢ and b. They are calculated from the

formula Pr

Autoregresswe period = ————y (1-186)
cos™Hf ———
(-2
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TasLE 1-1. Experimental series 1

No. of | Value, |No.of| Value, |[No.of| Value, |No.of| Value, | No.of | Value, [No.of] Value,
teimm, £ L term, £ 1 terr:, & e terrn, € g term, 1 e term, £ e
1 qQ #1 - 3 161 - 88 241 —17 321 — 17 401 - 68
a 15 A2 — B5 162 — 24 243 -70 g2 12 405 — 73
3 26 23 —102 183 0 — i3 243 —u2 323 35 403 - 78
i — 28 ad - 31 164 ¢ — 34 244 —68 324 33 404 — &5
5 — 11 85 412 165 28 245 — 0 325 11 405 — 24
4 24 86 [i%:? 166 a0 246 37 446 — 31 205 — 14
7 41 87 167 66 247 327 — 82 407 — 12
) 6 25 — 3 168 72 248 31 3R -1 408 — 15
g G 89 26 1689 49 2449 30 320 — 9§ 409 — 3G
11 34 a0 16 170 a0 25{ — 340 — 85 410 — 80
11 40 a1 — 33 171 S 251 —40 331 — 42 411 — 72
12 — 15 a3 — 42 172 70 252 —B4 232 — 48 412 — 66
13 - 1 93 — 36 173 GG 255 —53 33 — 44 413 [
14 58 94 — 15 174 60 254 5 Jad 414 5
L5 20 05 20 175 63 255 78 235 #7 415 38
16 — 40 96 22 175 &5 258 61 335 96 41 — 24
7 — 42 a7 — 40 177 38 257 15 237 47 437 35
15 — a2 +8 — 3 78 - 14 258 ~36 238 19 5] Aig 22
19 — &% a9 —123 170 — 4 — i} 439 500 I\119 - 20
20 — 45 0 . — BE 34 250 1 340 ’fat 420 — 54
21 —' 14 101 — 32 181 1% 26] . — B 841 25 421 — 44
22 6 102 59 132 — 14 268 17 342 A1 422 — 89
23 7 103 4o 183 — 38 263 64 343 . N 011 483 — 858
24 - 35 104 73 184 10 264 101 344 a3 424 — 75
25 20 5 14 135 61 265 70 345 59 425 — 43
26 — 2 106 27 186 28 266 3 #dg 7 35 126 - T
27 3 107 — 93 187 14 267 —20 ..3&7 — 427 a3
25 — 38 108 — 14 18K - 2 268 22 - 13 4123 100
29 - 3 109 — 180 33 260 4% 3Ly 54 42% i
B0y 26 110 10 190 a4 270 44 340 11 130 [ih]
a1 - 1 111 46 191 111 271 T 451 B 431 18
ag — 2 11% 27 193 101 arg L4 3 3452 9 432 3¢
33 — 38 113 — 25 1493 a0 274 S 353 61 4338 -1
24 — 66 114 — 70 194 — 1% 2% 1@ 354 38 434 i4
a5 — 115 — 50 195 — 47 2R3N, ~-17 235 33 435 41
a6 - 4 1i6 [ 196 — 55 276 — &0 156 30 436 T4
an - 58 137 43 187 — i —59 357 — 23 437 27
33 — 418 118 47 198 — 259 213 -17 358 — 78 433 6
39 — 68 114 23 199 — aany| 279 26 a9 — 08 439 31
40 - 158 120 - 12 200 — @3 250 14 150 — 28 440 —
41 — 168 121 — B3 201 SNBT 283 —22 351 — 8 441 24
12 — 57 122 — 25 202 | TS 12 288 -1 362 41 £43 43
43 - & 123 13 208 | PLE] 13 363 &1 443 - 1%
ii — 50 124 - 12 204 23 284 7 64 32 144 - 4
43 — 37 145 — 69 L05 dd 2845 a0 365 21 445 — 13
45 - 23 126 — 55 |4 13 2R 70 68 232 446 - 34
47 5 127 — 21 JS 207 — 41 287 84 a6y 55 447 — 19
48 — 10 128 — 2%} 2o — 106 Ba8 80 2B 36 448 30
19 - 13 128 29 209 — EE 259 71 269 32 149
50 — 55 134 &3 210 - B 294 34 370 35 430 122
51 94 143 3t 211 P 201 —13 371 48 451 ap
58 —~123 132 |4/ 41 212 EL] 292 —75 ars 3 452 71
53 —i16 153 \ 23 213 41 293 -73 275 - 4 453 Gd
4 —~105 31\ ’ 18 214 9 2404 —71 374 5 454 29
ib - 54 185 — 34 215 25 295 —38 370 — 4b 455 - 17
56 — 1% | 7186 — &7 218 24 206 —~47 BT6 — 90 456 — i
57 — 25 N\\\i7 — 59 217 -~ 15 207 —59 anT ~ 83 457 ~ 9§
52 — 15 38 [ 218 — 36 208 —4a7 378 — 80 458 —117
50 — 45 138 a6 218 — il 299 —42 ara — 51 159 —127
[i31] 2 140 52 280 - 75 300 1 380 — 20 460 — 3
61 .\'ﬁ i41 it 221 — 29 301 41 331 ~ 44 461 22
62 L 3 aT 142 — 292 302 8 382 — 77 162 - 2
637 |\NW 38 142 — 18 283 51 303 2 5234 — 19 463 i
64 7 51 144 44 224 44 304 — 8 334 63 464 32
&5 — 5 145 — 225 — 24 305 —34 385 120 465 55
66 — 684 146 & 225 — U2 a0ne ~10 336 123 484 61
&7 - 60 14% 52 227 — &7 207 52 387 104 187 55
a8 — 31 148 59 88 — 45 208 70 LY it 488 — 19
64 24 149 LT 429 — 5 300 56 380 b4 488 — B
70 72 150 2 230 28 310 —14 90 48 470 - 6
71 T4 151 9 431 31 311 —64 301 28 £71 2
72 - 1 158 - 4 232 58 512 —3% 302 4f 172 — 33
73 a5 153 - & 233 74 313 24 393 68 473 — &6
74 — 12 154 - B 234 30 314 41 304 a8 474 — 0
T& - 2% 155 2 235 7 515 &1 2095 106 475 — 50
6 17 156 -~ 20 236 — 26 316 113 396 114 476 — 39
77 — 3 157 - 2 237 - 14 317 a7 397 75 477 — 25
T8 33 158 7 258 | 4 318 30 388 52 478 — 23
79 B5 159 12 239 25 319 —52 3459 479 — 39
a0 58 160 ¢ — 390 240 34 520 —65 400 — T 480 — 39




INTRODUCTION

TABLE 1-2. Experimental series 2

No. of value, | No.of| Value, | No. of | Value, |No.of| Value, | No.of | Value, | No. of
: term, §) e ferm, £ g term, ¢ ™ term, ¢ g terim, ! I term,
: 1 52 21 —28 81 - 70 121 —170 161 17 201
! 2 17. 12 21 52 — 56 | 122 —149 162 62 202
3 42 43 42 83 — 40 123 - 85 163 24 203
4 78 44 91 B4 — 60 124 1] 164 -~ 36 204
3 5 39 45 56 85 — 91 125 — 4% 185 — G0 205
g — 13 46 66 26 —108 126 31 168 - 33 206
7 — 22 7 10 87 —141 127 82 167 —106 20%
8 — 51 45 9 54 —128 | 128 75 168 - ag 208
9 — BB 19 25 34 —120 | 124 30 159 25 209
10 — 63 50 33 90 — 9% | 120 170 28 210
i1 — 31 51 ~ 9 91 — 73 131 29 171 1% 211 —
12 - & 52 —47 92 - 43 132 172 — 15 212
t 12 11 53 —15 93 — 28 133 36 173 — 38 213
: 14 G 54 3 94 — 1% 1 134 33 174 - 85 214
15 22 35 38 95 — 17 135 13 17a — 26 215
' 16 11 56 48 96 - 18 136 48 176 - 2 2186
17 i1 57 ad 97 28 137 197 35 217\
18 € 58 81 98 37 {138 9 178 e 213
19 —~ 35 59 73 99 69 139 9 179 38 1, 21%
20 — 85 &0 7 100 116 140 41 180 80,4 220
21 — 89 51 —d46 it 152 141 4 181 580 221
22 —~ 109 62 ¢ —33 102 63 | 142 — 53 182 an, N “g22
23 — 56 63 —&9 103 3 143 — 33 123 R 223
. 24 64 —48 104 — 12 144 — 83 184 [ 28 294
25 19 45 -31 105 — 55 145 — B4 185 ): =43 225
26 35 66 —65 108 — 20 146 — 24 18679\ — 84 | 228
27 28 67 — 68 167 — 82 147 -~ 17 7y — 12 237
28 0 68 —28 168 — 20 148 5 ].A%8 — 97 228
29 - 23 69 25 109 2 149 56 N 189 — 38 420
30 — 87 i 55 110 25 150 17 190 — 48 230
31 - 97 71 65 111 7 151 3 191 [ 231
32 — a0 72 112 — 29 152 % 19% B4 232
33 — 4 73 2 113 — 54 163 ¢ 193 56 233
34 — 2% 74 27 114 — 34 15¢ | M9 104 - 3 234
35 — 48 75 62 115 — 53 153N\ 85 195 235
34 —~ 14 76 19 1i8 — 88 s N/~ 49 196 — 14 236
47 | — 15 77 &0 117 —123 157 — 52 197 237
38 — 34 78 28 118 —124 158 - 43 198 - 35 238
i 39 — 14 74 -4 1 119 —116 J %59 | — 43 | 18w .| -— y2 [ 233
10 — 52 Y] —57 120 —~171, ™80 —. 20 200 —103 240
Tasrs 1-3.~Experimental series 3
[y <
4 No. of | 'Value, {Ne.of | Value, { No.%of\ Value, | No. of | Value, No. of | Value, | No. of
i term, t e ferm, ¢ e tyq’mgt e term, ¢ i torm, 1 term, ¢
Ny
: "1 —-102 41, 42 \\ a1 6 121 - 28 161 il 2011
b 2 —117 48 - 18 82 59 128 54 162 a7 202
¢ 3 — 33 43 — %1) 83 &0 123 125 153 15 203
4 70 44 09 84 18 i24 131 164 22 204
5 133 45 N CAg 85 -3 125 - a2 165 57 205
6 117 46 () 60 26 —49 126 — 97 166 14 206
7 20 ATIN 23 87| =17 127 — 86 167 — 5§ 307
8 — 8y 48 f —~ 33 48 —35 128 - 1% 158 — B2 208
9 —113 93| — 41 59 7 129 17 169 : — 20 269
10 — T8 50 - 14 a0 83 130 34 70 56 210
11 - 20,94 M1 -7 31 133 131 - 3 M1 0 101 211
12 — BN 52 - 4 92 114 132 — 18 172 i 63 2312
13 =31 a3 s 23 26 133 25 178 — 85 213
14 . {1a S4 — 17 o4 —35 134 - 174 —~110 214
15 47\ 36 55 — 28 A — 85 135 - B3 175 —127 213
18 < 16 56 - 96 —23 136 —111 175 — 80 218
17 7 57 - 31 0y 42 137 -115 177 17 217
. iz 16 58 — us 36 138 —ag 178 1 99 218
19 — 34 59 21 99 - 139 104 179 64 214
20 — 41 &0 00 100 —47 i @ 172 180 - 3% 220
21, 30 61 75 101 —~69 idl 136 181 — 88 291
22 — 34 62 - 38 102 —12 148 a5 182 - T4 222
23 26 63 — 03 103 59 143 —119 133 24 233
24 43 64 -100 itd 55 144 —130 184 128 294
i 25 58 65 — 28 105 —15 145 — 19 185 165 225
26 70 66 15 108 -24 146 83 185 61 2258
27 1% &7 1 107 15 147 93 187 T8 227
28 2 85 -7 108 ] 148 35 188 —-152 298
29 -~ 57 59 109 26 rig — 59 180 — 9§ 229
! 30 — 80 i - 31 e o—2v 150 — 81 190 47 230
v 3t - 80 71 — 81 i1t -5 151 — 38 14 w6 | 231
1 32 — 3 53 . - 16 112 34 152 192 25 232
33 12 73 16 113 38 153 80 193 ~ 22 243
! 34 — 0 74 - 111 114 33 154 108 194 — 23 254
35 — 58 75 122 115 -7 155 32 195 — 21 245
i 36 —161 78 50 116 8 136 - 2 196 — 47 236
| 37 —~ B3 77 — 13 117 29 157 — 39 187 — 5¢& 247
: 38 58 78 — 77 118 31 158 — &1 19% —~ 18 238
i 39 119 79 — 51 114 —~ 8 159 — 57 199 47 234
! 40 98 30 -7 120 —58 160 32 | 200 106 | 240

¥
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Tasie 1-4. Experimental series 4

No, of | Valuc, | No. of | Value, Value, { No. of | Valae, | No. of | Value, | No. of | Valae ‘
terms, £ e fermes, ¢ 4 iy terma, ¢ Uz terms, ¢ | torms, £
1 1 o—20 | a1 | 3s —g3 | 121 | -19 | 161 201
2 12 42 ~51 35 1 122 13 162 |. 202
3 —30 43 a7 "z | 128 22 163 203
4 1 i1 —22 9 | 122 —329 164 204
5 5% 15 18 ~14 | 133 a7 165 205
6 -85 18 35 —34 | 128 15 1686 206
7 ] 47 1 -5 -2 | 1ar —32 167 ang
8 —33 3 | G6 — 9 b 128 9 163 208
it —53 49 —84 46 | 129 23 169 209
16 42 50 41 —40 | 130 1 170 210
11 —38- | 51 —18 58 | 131 5 171 911
12 8 52 —'3 ~4 | 132 44 | 173 12
i3 48 33 15 —18 | 133 —89 173 3
i ) —=s9 51 —25 82 | 131 71 174 214
15 83 55 28 —38 | 135 —-58 175 915
16 7 56 —38 28 | 138 17 176 216
ir —58 &7 3 —a8 | 137 —52 177 | . 217
18 87 58 1 50 | 138 -4 i8¢ 318
19 —97 59 —25 —~1 1 13a 87 170 4 [ 419
20 99 80 -1 5 | 118 —92 TR0 280
21 — 28 §1 31 34 | 141 100 181 24
22 -8 62 —50 —32 | 142 <61 TR 228
a3 11 83 85 57 143 ¢ 135 223
24 —ay G —RY — 54 144 304N\ 182 224
25 18 63 34 34 {1 145 ~Ba [ 185 225
g 23 66 38 ~24 | 14k 3 186 234
27 —15 67 6 —13 | 147 2T 187 237
28 —15 48 -1 17§ 148 LNI5 188 a3
29 —'3 89 4B —41 § 149,66 | 188 220
30 —14 70 26 27 | 1oV sz 190 830
31 -1 il -0 BNy —10 191 231
31 —40 g 100 —-40 | Jase/ | -57 193 235
33 -2 3 Za26 34 | {153 76 193 233
34 —27 74 ! =35 —20 4 M54 —73 104 254
35 18 8 i —11% 155 80 195 815
a6 V] 6 —25 3 156 19 196 254
3 15 7 —11 2y 157 —i4 197 237 |
33 16 75 17 eg | 158 17 198 238
39 —26 79 —58 L 25 | 159 . ivg ¢ 23
£0 -7 80 38 166 —42 200 | 0
‘LapLidss. Constants of the four experimental series
t\"
\:"\,” Series
O 2 3 4
Nugiber of terms . 240 240 240
#\Mean §-821 ! — 8179 3.720 0-317
\ Nariance 2535-114 | 3414-422 3900-93b 2001200
Standard deviation 50-350 | 58-433 62457 44-735
o —1:2 —11 1:0
b _ 05 | 04 08 05
Autoregressive poriod 9-25 19-53 6-92 3-00
m.d. {pealca) 505 587 552 269
m.d. (uperosses) 8:30 12-39 6-38 2-76
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1-27. T shall also have occasion to re f'.:%oa famous series of wheat-
price index numbers compiled by SJrWﬂham Beveridge[2] and for the sake
of completeness give the actual seriefa..ifn"Table 1-6.

1-28. Chapter 2 discusses the arithmetical operations required in
correlogram and variate-djﬂere{icé"analysis. In Chapter 3 I congider the
deviations of correlograms for Short autoregressive series from theoretical
expectation-—a troublesomie'point in the interpretation of observed correlo-
grams. Chapter 4 shoqg@hﬁt for autoregressive series periodogram analysis
is not only of no value But may be dangerously misleading. Chapter 5 deals
with the interprgii&ﬁon of variate-differences for autoregressive series. In

Chapter 6 I diseuss the method of counting peaks, show that it is very in-

sensitive, and‘suggest further possible lines of inquiry in this direction.

Finally, @%ai:uter 7 summarizes the results in non-technjcal language.

O
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TABLE 1-6. Values of the Beveridge series of trend-free wheat-price
index numbers. (Data from reference [2])

| Year |Index| Year |}'_ndex Year |[Indox| Year ;Index enr |Index| Year |Index
g oy £ ¢ ity oy, -2 #, t o,y
15G0 106 1562 105 1624 106 1684 75 | 1748 1039 1810 i+ 164
1501 128 1563 90 1625 121 1687 66 1749 134 1811 : 140
1502 124 1564 78 1628 105 1G85 62 1750 air 1812 ¢ 121
1503 04 1568 112 1827 34 1688 TH 1751 99 1813 ¢ 4
1504 82 1566 100 1428 97 1690 79 1752 95 1814 96
. 1h05 88 1567 | E6 1629 108 1691 a5 1753 90 1815 130
1506 87 1568 = 77 1630 1458 1892 134 1754 80 18186 1178
1507 48 1569 80 1631 114 1883 ! 169 17556 85 1817 126
1508 88 1570 93 1632 1058 1694 ; i1l 1756 @ 117 1818 94
1509 68 1571 112 1633 97 1695 : 109 1757 112 1819,\ 26
1510 098 1572 131 1654 a2 1696 111 1758 95 1820, N 84
1511 115 1573 ¢ 1568 16356 97 1697 128 1759 51 1821 76
1512 136 1574 | 113 1636 48 1695 163 1760 88 ,{BQQ 77
1513 ic4 1575 | 89 1637 105 1699 137 1761 100,44\ I523 71
1514 a6 1576 l 87 1638 w7 1700 99 1762 ¢ oNR ] 1824 71
1585 110 1577. | 87 1639 93 1701 85 1763 ”‘88 1825 69
1516 107 15378 ;79 1640 29 17G2 ‘ 72 1764 | 95 1826 82
1517 87 1579 90 1641 99 1703 35 17656¢ /» 101 1827 a3
1518 75 1580 ' 90 1642 107 1704 ki 1766, 7 106 1828 itd
1519 86 1531 87 1643 106 1705 46 957 113 1829 103
1520 111 1582 23 1644 1} 1706 64 1748 108 1830 110
1521 125 1583 &5 1645 82 1707 69\\ J1769 105 1331 106
1522 - 8 1584 . 76 1646 88 i708 %:35 1770 131 1532 82
1523 86 1585 116 1647 116 170% s Nt 771 136 1833 B
1524 102 1586 161 16458 122 17100 \LD8 1772 119 1334 78
1525 71 1587 7 1649 134 171N 103 1773 106 18356 82
1526 81 | 1588 | 84 | Teso | 118 | ke 116 | 1774 | 105 | 1836 88
1527 129 1539 104 164l 136 | \1%13 134 1775 88 1837 102
1528 150 1580 111 1652 1024 L1714 163 17776 84. 1838 117
1529 129 1581 97 1653 J23| 1715 o0 1777 94 1839 107
1530 125 1592 LG8 16454 63 1716 3] 1778 &7 1840 a5
1531 139 1593 | 100 1655 7 76 1717 89 1773 79 1841 1l
1532 a7 1594 119 16564~ 75 1718 94 1780 87 1842 o2
1533 a0 1595 131 .1%37.’ 77 1719 167 1781 B8 1543 L]
1534 76 1596 143 \6 8 103 1720 | 89 1782 04 1844 oz
1535 102 1597 138 7\ 1658 104 1721 ; 79 17583 o4 1845 115
1536 100 1558 11‘2: < 1660 : 120 1722 241 1784 a2 1846 139
1537 73 1559 L] 1661 167 1723 94 1785 B35 1847 20
1538 86 1608 N7 1662 128 1724 110 1786 B4 i8458 B0
1539 T4 180157 » 80 1663 108 1725 111 1787 83 1849 3
1540 ; 74 § 16023 90 | 1664 | o1 | 1726 | 103 | 1788 | 108 | 1850 | 78
15431 i I 80 1865 85 1729 04 1759 108 15851 36
1542 80 ] ’~j604 30 1666 73 1728 101 1750 86 1852 105
1543 ggsp 1605 | 77 | 1667 74 | 1729 g0 | 1791 78 | 1853 | 138
1544 | .l 12y 1606 ; 81 16658 80 1730 86 1792 BT 1854 141
1545 lad 1607 o8 1669 74 1731 80 1793 85 1855 138
15486 80 1608 | 116 1674 8 1732 T8 1794 103 18566 147
" 1547 a4 1609 94 1671 B3 1733 B84 1795 130 1857 82
1548 69 1610 93 1672 84 1734 91 1796 95 1858 81
1549 100 1611 160 1473 106 17356 94 1797 84 1859 7
1850 133 i1z L 99 1674 134 1736 1401 1798 87 1860 116
1551 129 1613 100 1675 122 Lk 93 1799 120 1861 107
E552 100 1614 04 1676 162 1738 a1 1800 139 1862 b2
1553 80 1615 B33 1677 ot 1739 122 1801 117 1863 78
1554 100 1616 02 1678 115 1740 159 1802 1G5 1864 ‘81
1555 123 1617 100 1679 113 1741 110 1803 04 18465 04
1556 156 1618 g2 1680 104 1742 90 1804 125 1364 1149
1557 7t 1619 73 1681 a2 1743 81 1805 114 1867 118
1558 73 1620 81 1682 84 1744 84 1806 08 1365 93
1569 81 1621 a9 1683 56 1745 102 1807 93 1869 102
1560 84 1622 124 1684 | 10t 1746 102 1808 94
1561 97 1623-| 106 1685 i 74 1747 100 1809 ' 04
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CHAPTER 2

THE CALCULATION OF SERIAL CORRELATIONS
AND VARIATE-DIFFERENCES

- Serial correlations

2-1. One of the most serious handicaps in the investigation of oscillations
in time series is the amount of arithmetical work required. In this chapter -
I describe some endeavours to reduce the labour of computing serial corre-

lations and. variate-differences. Q)
2:2. The method originally given by Yule for the calculahiegl of serial
correlations was as follows: 2\

The series is typed in duplicate on a Burroughs record;ng tabulator and
the skip cut up the middle, thus giving two records of; the’series. For the
caleulation of, say, the kth coefficient, one slip is pmhed g0 that one series
is k units below the other, i.e. the jth term of onejg\on the same level as the
(j+ E)th term of the second. (This, of courg&e;&feans that % terms of one |
series at the beginning and & terms of theebher at the end have no corre-
sponding member. These are ignored in the ca.lculablon which is thus based
on N —F pairs, N being the number in $he original series.) .

The computer then goes down thes series, squaring the difference of each
pair of texrms (either in his head! or by reference to a table of squares) and
recording the square on the Burroughs machine, The squares are summed,
checked by reading back against the series, and hence the resultant,
Z{x;— ;. 4)% gives the ]gﬁbduct sum Z{(&;%;,,) by a simple apphcatlon of the

identity: .
.g‘ 25(&?3;) Z(a®)+ 2y — 2o —y)*. (2-1)

1t is also, of ‘GI;]I‘SG necesgary tocompute Z{zx) and X (a:2) which are further
required if'c Jeulating variances.

2-3, MAn alternative method is to calculate the sum Z(xzy) dirvectly by
cunml&tmg the individual products on the machine. Personally, I find that
fof 9 single operator this is more difficult than Yule’s method:

(@) because one cannot memorize all the possible products as one can with
squares and hence has to carry out multiplications,

(8) because one is apt to overlook the sign of the product, whereas of
course the squares are all positive, and

(¢} hecause checking by repetition of the operation does not reveal the
source of an error if the repeat does not give the same answer as the first,
whereas with the help of the record provided by the Burroughs an error
can usually be located fairly easily.
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2-4. In practical cases the means of the series are not exactly zero, and
to caleulate r,, accurately we have to use some such formula as

(N — k) cov (w;2;,4)

e T W = k) vara, (N — k) varag (22)

where (N =) cov (a,@s0) = Z@,Tsx) — Nl_—kz(x,.} LI (23)
(N - k)yvare, = Z(al) - ﬁz%xj), (2-4)

(¥ —k)vara,, = Z(5,4) —N—I_,‘.ézz(xm), ~2-5)

the summations extending from j = 1 to j = ¥ — k. If we choosg'ah origin
so that Z{(z;) is nearly zero, an approximation to 7, is given hyl.\

4

g, = E(xs‘xﬂk_)_' D
FTEE ZELOET

774

2:6)

that is to say, the terms on the extreme right in e{lua,tions (2-3)~(2-5) may
be neglected. T'his is quite a useful saving in orke, and except for the firgt
two or three serial correlations, which az®{usually required accurately,
I find that the approximation given by_(2-:6)'is satisfactory. In the first 60
serial correlations of the Beveridge vsz.a’r'iés (Table 1-6), for example, the
approximation was correct to threejﬂéfces of decimals in 15 cases, one unit
in error in the third place in 35 cages! and two units in error in the third place
in the remaining 10 cases. The effect on the correlogram was entirely
negligible. \ / :

2:5. The magnitude oéhe error involved, in the approximation is easily

‘ascerfained. We hayé/for the true value of r,, writing the variates as »

and y and the number of pairs entering into the correlation as 7,
AN\ : -

O L) wy

[T +T]

- ifE%}}i{(l“;z)) (1 50m) (1+3553)

approximately,

B T L1 Lpp nm)
TREIEF 22 2207 Zlay))
The last three terms in curly brackets on the right represent the correction
to be applied to the approximate value to reach the true value. Unless
Z(xy) is small (in which ease 7, itself is small) the correction itgelf is slight.

KoM 2

(2-7)
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2-6. Apart from this approximation I have not found any substantial
improvement on Yule's methods; nor have 1 found, any simple arithmetical
check on the accuracy of the working except by repeating the operations.

2.7. In order to avoid errors, however slight, I have not used the
approxirhation of equation (2+6) in working ouf the serial correlations given
in this brochure. This imposed a standard of arithmetical austerity which
1 cannot really recommend to others, but it seemed to me worth the extra
Iabour at this stage to avoid complicating an already complicated issue.

2-8. The question then arises whether simplification might be effected
by using some coefficient of correlation other than the ordinary product-
moment coefficient. There are theoretical objections to such a course, but
they might have to give way to arithmetical necessities in the analysis of
long series. I consider in the first place an alternative used by Schumann
and Hofmeyer[14] who argue as follows: O

We have

var(x—y) = varm-{-vary—%xf('varx vg‘:ﬁ:y s

__ varz{vary—var(a —:'?)')\\
B 2.\/{var z var )

Now suppose the series long enough, and p'k{é':o\r&er of the serial correlation.
low enough, to justify us in writing varx's'vary = o2, say. Then

202 —var (x —w), _: ,_var {x—12)

7 = .
2o? % 252

(2-8)

Suppose further that the distribution is such that the ratio of the mean
deviation M, to the standdrd deviation is the same for the series as for the
difference x — . This ﬁfih particular, be true if the deviations are normal.

Then ANM, = ko, M, = kifvar(@—y),
and hence, from {248),
N M
A& r=1-0 (2:9)

An appj::(;;imate value of # can then be found from the mean deviations of
the geries.

\2'9. T tested this method on the first few correlations of the Beveridge
geries of trend-free wheat-price index-numbers {Table 1-6). The results
were as follows: '

Order of Estimate of r,
correlation 2N : from {2-9)
1 0-562 0-809
2 0-103 0-168
3 —0-075 ~ 0034
4 - 0-(92 —0:052

The agreement: is far from satisfactory. In fact, for many purposes it would
be considered definifely unsatisfactory. The cause does not lie wholly in
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the failure of the Beveridge series to attain normality, as is shown in Table
2.1, giving the distribution of values of the series itself and the first differ-
ences. Here the ratio of mean deviation to standard deviation for the two
cases was 0-772 and (-725, against a theoretical value of 0-798. The differ-
ences are not large, and it looks as if the Beveridge series is as near normality
as one has any right to expect, at least in economic series.

Tasre 2-1. Distribution of the values (a) of the Beveridge wheat-price
index (Table 1-8) and (b) of the first differences of the index increased

by 100
i b) (b
Values of | {a} ¢ Values of ()
index (or | Frequency EFroquency index (or Frequency Frequeney
i of values of - of yalues of
first difference | of values first differ. | freb difference of values | Jits, aiffer-
plus 100) ofindex | 0 190 | Plus 100) ‘ of index - (e 4100
40 — 1 120~ 0,00 10
45— — 1 126— 10°0) 10
50- 1 4 130~ AN 8
55— — — 135— b 2
60~ 3 4 140- N 2
65— _ 6 13 145 p \\ 1 4
70— 16 ' 8 150- ¢°¢ — 1
75 26 10 1557\ 3 1
80~ 37 24 1605 N\ 2 2
85— 38 30 165+ 2 1
90— 48 39 . elyo- — —
95— 35 43 w75 2 —
100 35 56 S8 180 — —_
105- . 34 41 4 185- — 1
110— 21 84, pP—-— -
115~ 16 1%* Totals 370 369 i

2:10. T conclude that j;]}e\approximation represented by equation (2-9)
is unsafe. For short semies’ it would evidently be liable to give even less
satisfactory results th&n those above. Schumann and Hofmeyer, I ought
t0 say, were wWorking with a meteorological series of 3652 terms and only
proceeded as f%&s 74, being interested in the decay of serial correlation
rather than 4 oscillatory movements. One must sympathize with their
wishes ta cﬁt down the arithmetic as far as possible on a series of such a
length\wluch is far Ionger than anything in economics except where such
topics as daily stock quotations are being considered.

But I am not at all sure that the proposal to use mean-deviations does
result in 2 very appreciable saving in labour. Unless the series consists of
terms which run into four significant figures it is almost as easy, with a little
- practice, to add squares of deviations as the absolute deviations themselves,
and easier to work out correlations if the series is so short that a new mean
has to be taken for each correlation.

2:11. Another possibility which seemed worth examination was the
replacement of product-moment coefficients by ranking coefficients.

z2-2
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However, for series of the lengbh encountered in practice, say greater than
30, the calculation of pure ranking correlations entails greater labour than
the method of product-moments itself, for the series has to be renumbered
for each serial coefficient. Theoretical considerations apart, there seems to
be loss of time and efficiency in the substitution of ranking methods for
ordinary product-moments.

2-12.  Finally, it occurred tox me that perhaps a rough indication of serial
correlations might be obtained by the consideration of signs alone. Suppose
that in a series of » pairs of terms with a mean in the neighbourhood of zero
P have the same sign and n—p opposite signs. {If one of a pair is, ZOTO We
may allot § to the number of both positive and negative swns NA rough
indication of the extent of serial correlation is given by the I:aublo pin, or
preferably the ratio. 2p O

W= - ~

L < (2- 10)

which can vary from —1 to + 1 like an ordinary co@ﬂ'iment of a,ssouautlon

or correlation. \
AN

W

TaBLe 2-2. Serial correlations and eqeﬂ“}\clents w of equation {2:10)
fﬁr two series of 65 ahd 64 terms

A

Order of Series A o2 Heries B

correlation M ™ & . w
1 0-27 { 0-25 . 0-58 0-46
2 ~018 (- —014 002 0-03
3 — 018, ™ —016 —0-27 —0-21
4 — 27 —0-21 040 —(-22
5 —0:3% —027 . —0:39 — 032
f £0:07 —0:01 —0-34 _ 14
7 S ‘\0-11 0-14 —0-17 — 002
8 NN 24 002 0-17 0-11
19 N\ 0-07 — 009 087 0 33
1T NP —13 —0-11 017 025
12, \\ —-11 —0-02 —0-07 0-04
].} — 23 — {004 ~ (30 —0-i8
m;lﬁ : —0-24 - 0-08 ~ 033 — (24,
\ 16 —-08 12 - (32 _0_31'
18 013 0-10 — (28 _ (21
18 0-16 — 0016 20 000
14 013 — 122 0-36 0-02
20 G-09 —~0-02 ~ 034 0-00
21 G-04 {-23 o911 12
23 — (13 016 —~0-14 —014
23 ~0-28 G-05 — 020 — 007
24 - 0-04 02 —0-20 —010
25 — 007 ~ 320 —0-22 — 008
24 - 14 (18 — 005 011
28 038 0-24 0-40 — 003
29 017 0-08 0-36 - 017
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Table 2-2 gives a comparison of the values of w and 7 for two series of 65
and 64 terms. {The two series were those of wheat acreage and wheat prices
in England and Wales, the original data being given in my paper of 1944{91.) .
The approximation provided by w is obviously very rough and one cannot -
say more in its favour than that it might be useful as a preliminary test to
see whether correlogram analysis was likely to yield useful results.

Mechanical methods

2-13. When correlogram analysis is extensive enough to justify the
construction of special machines or the modification of existing machines
for special purposes it will be quite possible to calculate serial correlations
to a sufficient degree of accuracy without going through the arithmetical
labour dealt with in the foregoing paragraphs., Three possibilities may be

~

mentioned: N

{¢) By suitable arrangements of punched cards hhe serial covariances
may be worked ount exactly. L do not know of a,nj? correlogram analysis
which has been carried out by punched cardsdahd mechanical analysis, '
possibly hecause of the fact that individnal warkers find it quicker and. less
expensive to caleulate serial correlationy d:iréct; but the technigue would
no doubt be useful in extensive investigations requiring » high degree of
&CCUTacy. - N

{b) 1 understand that during the war machines have been devised from
telegraphic tape-machines for£he purpose of calculating serial covariances.

(¢) An intoresting optical\device described by Martindale[13] gives the
serial covariances quicklyand easily, and if it can be brought to the requisite
pitch of accuracy will)go far to overcome the difficulty of correlogram
analysis. I undersbafid that consideration is being given inseveral quarters
to the construgfion of improved machines on these lines. If satisfactory
machines aré\bnﬁlt and made available for general use it will be possible to
make a great deal of progress with some important questions which still
rem@ip; asolved.® :

Variate-differences

2:14. The only method I know of carrying out a variate-difference
analysis directly is to write the series down, together with its differences,
up to the required order and then to sum the squares of appropriate terms.

* I have made s few inguiries to see whether existing machines which integrate the
product of given functions are of any wse for serial correlation analysis. The results were
rather disappointing, Owing to the length of time-series and the angular appearsnes of
graphs which represent them there seem to be serious practical difficulties in applying such
instruments as the Bush differential analyser. The optical methods deseribed by Burger

and van Cittert[5] seem fo me to present similar diffieulties..
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This is almost intolerably tedious for long series, besides throwing a heavy
steain on the computer’s accuracy.

2:15. Variate-differences can, however, be computed fairly easily from
the product-sums which are reached in serial correlation analysis. If we
have a series of values &y ... &, the first differences are z, — x,, etc., the second
differences 2, — 2, + %5, etc., and so on. Let S; be the sum of the squares of
the jth differences and write for the product-sums

i —f

By = 3 (%) {2-11)
k=1

The sums S are those appearing in variate-difference analysm and the
quantities P appearin serial correlation analysis. Either set oaz;‘he expressed
in terms of members of the other, as follows!

Sy=P, N\ (2:12)
: r—1 el : n ’\\ .
By =X {mi—apn) = X 2j—2 3 au;,+ 3 ada2F—xl -2k — 2R, (213)
i=1 i=1 12)
= z(wl—zx-+1+wf+z)2 P\
i—1

Ex+42 +Ex—42 3+l+2§]xx5+2 43 ;%
. §=2
= SPO_ 8P1+ 2—%“3:1 'n = (.23;1"*932)2 (2xn_'xn—1) ] (214)

and so o1i, For the purper of expressing the general formulae of this kind
it is eonvenient o c%}fy‘ the sums S. Suppose we write the series z; ... %,

preceded and follawed by a number of zeros. The difference table will then
appear as fo]low\s:

0
A&
:§ 0
RN . 0
NS )
\'\‘: N 0 ' ST
0 +a,
—# 3wy — @, ete.

xl — 2x1 + xz
&y ] — 3, + 3z, —

Ty xry—2x, + 2,
Ty ¥y Zy— 32y + By —

Ty Xy — 225+,

with a symmetrical effect at the other end. Writing now 7, 75, etc., for the
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sum of the squares of members in the first, second, ete., column of differences
we see that

g

E

where the summation now takes place over all values of x and there are no
complications introduced by end effects. In fact, we have thrown the end
effects into the sums 7' which replace the 8’s. In actually calculating the
T7s from the §'s it is very liftle trouble to add the extra terms to the tables
giving the latter; and when calculating the s from the T"s only the
differences at the end of the table need he worked out. '

We have then from (2-15), on expansion O

e (0 () e g [0 () - +(j§"~’41€'ﬂ(]2116)

The coefficients of the various P’s are easily seen tg'\b'é'equal to corre-
sponding powers of ¢ in \

O (e e Qs

ie. in (—1)(1—£)¥, and we find, on subsj;ifﬁﬁon in (2-16),

_p(¥\_ap( Y \pan ¥ 1y 917
e nff)-on( et

For example, &
= By \< 4 \ . ‘ .
T, =2F— 2B, O *

T, = 6F,— 8P, + 28
T, = 20P,— ;{Q&# 19P,— 2P,
T, = 70%%}1’21)1 +56P,—16P,+2F,
T, = 2680, — 420P, + 240, — 90F, + 20P, ~ 2B,
T (024.P, — 1584P, + 990F, — 440F, + 132F, — 24P, + 2F;,
T§=’ 3432P, - 6006P, + 4004F, — 2002F, + 128, — 182F;
+ 98P, 2P,
T, — 12870B, — 22880P, + 16016F, — 87367+ 3640F, — 1120F;
+ 240P, — 32P, + 2P,
T, = 48620F, — 87516F, -+ 636481, — 37128P; + 171361, — 61207
+1632P, — 306P, + 365, — 2P,
1T, — 184756P, — 335920P, + 251940F, — 155040F; + 715208,
_ 31008P, + 9690P; — 2280F, + 380F; — 40P, + 2Py

The coefficients oheck in virtue of the fact that they sum to zero.

y (2-18)
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* Conversely we have
2P, = 21,
2Pl == Tl + 2{"})!
28 = T, 401+ 2T, _
2P, = — T+ 67, — T, + 27T,
2F, = T)— 8Ty + 20Ty — 16T, + 2T, _
2K = — T+ 107, — 367} + 60T, — 257, + 2T,
2Fy = Ty— 1275 + 547, ~ 1127 + 1057} — 36T + 27,

L (219)
2P, ='—fﬂ;+14£l};—77T5+210T4—294T3+1_96T2—4QTI+2T, N
2P, = T, 167} + 1047, — 3527 + 6607, — 6727, + 3367, X
_64T +2j}]’ { \"‘

2Py = — T, + 18T~ 1357, + 5467, — 12877, + 17827, — 13865{’3
+ 5407, - 81T, + 27, . N

2P, = Tyy— 207, + 170T, — 00T, + 22757, — 40042@&290&1
— 26407, + 8257, — 1007, + 27,

The coefficients sum in turn to 2,1, -1, — 3 &\1 1, 2, ete. The coefficient

of Tk in2Fis

(~1y+ ‘”“). . (2:20)
J 1

2:16. For the purposes of the present study we shall require equations

of type {2-18) up to the 20th oxder. The coefficients increase rapidly in

magnitude above T}, and, %ce we eventually have to divide by the coeffi-

2
cient of F,, namely ( ; . We might as well carry out the chmsmn at once.

Table 2-3 gives the nevessary coefficients, after division, up to the 20th
order. For mstance if we know F, to F, from the serlal correlation analysis
we shall hav&\

N\
% —B% 1714,285,714P, + 1-071,428 5715, — 0-476,190, 4767,
(vﬁ)\ +0-142,857, 1435, - 0-025,974,026 P, + 0-002,164,502 P,

th\coefﬁclents being given in Table 2-3, column headed 8.
Summary

2-17. (1) For a computer working only with the usual machines no
essential improvement was found on the method of caleulating serial.
correlations proposed by Yule.

(2} Provided that the mean of the observed series is near o zero an
adequate approximation to serial correlations may be obtained by using
sums of squares and products instead of variances and covariances in the
formula for product-moment correlations.
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Tasre 2-3. Coefficients for converting the
gums P into the sums T (see 2-16)

25

et o o
RN~ O oW R UTRWRED

0-000,654,918
(-000,062,373

(-001,496,955
0-000,204,1304

0-002,874,834
0-000,499,971

0-004,899,717
0-001,020,774

T
I 2 l 3 4 ; 5
o1 - - 1- I 1
1|1 1-333,333,333 | 15 L1 1-666,666,667
2 0-333,533.333 | 0-6 0-8 0-952,380,952
3 — — 01 0-228,571,429 | 0-357,142,857
4 — — — 0-028,571,420 | 0-079,365,079
5 — — — — 0-007,936,508
6 7 ! 8 ! 9 10
0|1 1 9 1 1
1| 1-714,285,714 | 175 177,777,198 | 18 .| 1.818,181,818
2 | 1071428571 | 1.166,666,667 | 1:244,444.444 | 1-309,000,909 | 1.383.636,364
3 | 0-476,180476 | 0-583,333,333 | (-678,787,879 | 0.763,636,364 | 0-839,180:8
4| 0-142,857,143 | 022,121,212 | 0282,828,283 | 0-352.447,552 | 0-419,580,420
5 ! 0-025,974,026 | 0:053,030,303 | 0-087,024,087 | 0-125,874,126 | 0-167,532,168
6 | 0-002.164,302 | 0-008,158.508 | 0-018,646,019 | 0-033,566,434 | 0:052, 447,552
7 — 0-000.582,751 | 0-002,486,402 | 0-006,293,706 '0\012 340,601
8 — — 0-000.156.400 | 0-000,740,438 | \0002,056,767
9 - — — 0-000,041,133\] 0-000,216,502
14 — e — . — \0 £ 7 | 0000,010,825
11 ' 12 13 | ) 15
. & | .
1 - 1 I : 11
1-833,535,333 | 1-846,153,846 | 1-857,142,857 I 5}66 666,667 | 1-875
1-410.256,410 | 1450,540,450 | 1-485,714,286,1 1-516,666,667 | 1-544,117,647
0-906.503.407 | 0-0B7,032,867 : 1-021,428,574 N 1-070,588,236 | 1-115,196,078
0483510484 | 0-543.956.044 | 0-600,840,336| 0-654,248,366 | 0-704,334,365
0-211.638.462 | (-255,979,315 | 0-300,4200188 | 0-344,341,245 | 0-387,383,901
0-074.660.634 | 0-090,547.511 | 0-126,4DR,702 | 0-154,053,560 | 0-184,468,524
0-020.739,065 © 0-031,436,056 | 0:044,272,446 | 0-059,029,928 ‘ 0-0"75,464,396
0-004,366,119 | 0-007,859,014 | 0012,649,270 | 0:018,782,250 = 0-026,245,488

0-007,655,808
0-001,837,304

0-000.002.835 | ©-000,017.760\] 0-000,062,406 | 0-000,163,324 | 0-000,353,345
— 0-000,000,40 | 0-000,005,000 | 0-000,018,845 - 0-000,052,347
— B\ 0-000,000.192 | 0-000,001,396 | 0-000,005,609
— \ — ¢-000,000,050 | 0-000,000,387
— PR 3 _ — 0-000,000,013

- 8 AN 7 18 19 20

0| 1- O 1 1 1

1 1-332,3%}@41 1-888,888,680 | 1.894,736,842 | 1.9 1-604,761,905
3 | 1568621451 | 1-590,643,275 | 1-610,526,316 | 1:628,571,420 | 1-545,021,645
3 | 1.155.890,753 | 1-102,982,456 | 1-227,067,660 | 1.258,441,558 | 1.287,408,244
. 1| 0158.980,080 | 0-795.321,637 | 0-836,837,047 | 0-875437,606 | 0-911,914,173
{5 Kou90 308565 | 040,962,786 | 0:500,257,333 | 0-547,148,504 | 0-583,625,071
D NaI4e5e283 | 0245107075 | 0-275,847,722 | 0-306,403,162 | 0-336,708,772
7 | 0-093.327.940 | 0-112,382,406 | 0-132,406,907 | 0-153,201,581 | 0-174,588,696
8 | 0-034.097.981 | 0-044,952,962 | 0-056,018,307 & 0-068,089,502 = 0-081,039,038
9 | 0-011.160.354 | 0-015,560,641 | 0-020,747,521 | 0-026,749,483 | 0-033,541,671
10 | 0-003.015211 | (-004,610,560 | 0-006,668,846 | 0:009,228,960 | 0-012,298,613
11 | 0-000.670.047 | 0-001,152.640 | (001,839,682 | 0-002,767,188 | 0-003,967,20¢
12 | 0-000119,651 | 0-000,238,477 | 0-000,420,259 | 0-000,714,113 | 0-001,115,802
13 | 0-000,016.504 | 0-000,039.746 | 0-000,083,082 | 0-000,156,212 . 0-000,270,497
14 | 0-000.001.650 | 6-000,005,129 | 0-000,012,982 | 0-000,028,402 & 0-000,053,691
15 | 0-000.000.106 | 0-000,000,481 | 0,000,001,574 . 0-000,004,177 | 0-000,009,547
16 | 0-000,000.003 | 0-000,000,028 ; 0-000,000,139 | 0-000,000,477 | 0-000,001,326
17 — 300,000,001 | 0:000,000,008 | 0-000,000,040 | 9-000,000,143
18 - e | 0-000,000,000 ' 0-000,000,002 | 0-000,000,011
19 — — — 0-000,000,000 | 0-000,000,001

0-009,600,000
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(3) Coefficients alternative to the product-moment correlation based on
mean-deviations, rankings or distributions of signs do not provide an
adequate substitute. " .

(4) The adaptation of existing machines or construction of special
machines for the calculation of serial covariances is quite possible and may
materially lighten the labour involved in direct computation.

(6) The arithmetic of variate-difference analysis is related to that of
serial correlation analysis and formulae are given for calculating the basic .
quantities required for one from those calculated in the other. -

- . ~

oA\

CHAPTER 3 o

CORRELOGRAM ANALYSIS OB'SHORT
"AUTOREGRESSIVE SERIES

3-1. For the series defined by 7\
Upa+ Wetyey + QU = €y, (3-1)

~where ¢ is a random element, the thegrétiéal values of the serial eorrelations
(that is o say, the values for a series of infinite length) are given by

AL Prin (19 + ) .
L B Si_n‘i,ff T (3 2)
where ,.\:;;;:\ p=4bl, (3:3)
_a L
N\ = —1__ N
Ko f = cos 55’ . | (3-4)
2NO
O tany = I—Mt&nﬁ.
R, 1-5

For the m‘s\ﬁods of proof of this result see Kendall[107, It is due essentially
to Yu}\»é.;"oIn conformity with the usual statistical practice we write a Greek p
fopiéhé population value of the quantity which in samples is represented
byvthe Roman #.* .

3-2. It follows from (3-2) that the correlogram of an infinite serieg of the
simple autoregressive typeisa damped harmonic. The factor v is a constant;
the factor sin (k6 +9) introduces an oscillation into the correlogram with
harmonie period 27/f; and the factor p* damps out the oscillation with
greater or less rapidity according to the value of the constant b.

* Tt is conveniont fo refer to the population values as autocorrelations and the observed
values as serial correlations, the Greek and Latin derivations of ‘suto’ and ‘serial’ pre-

serving the same distinction as the symbols p and #; but I fear my own practice has not
been very consistent in this respect.



CORRELOGRAM ANALYSIS OF AUTOREGRESSIVE SERIES 27

For our experimental series the damping factor is considerable. In
series 1, for example, p = ,f0-5, and the twentieth correlation is therefore
damped according to the factor (3)*° = 0-001 approximately, so that py is
of this order of magnitude. In series 2 (b = 0-4) the damping is even heavier,
and even in series 3 (b = 0-8) it is considerable, py being of the order of 0-1.

3-3. Tt has been found that for series which, at first sight, appeared as
if they might be of the autoregressive type; the damping effect was very
much less marked than theoretical considerations led one to expect (cf.
Kendall[10). T proceed to show by analysis of the experimental series that
in autoregressive series of finite length the failure to damp is, in fact, a
normal phenomenon. It will follow that if, in practical cases, a correlogram
oscillates in a manner suggestive of antoregression but does not dampout
ag would the correlogram of an infinite series, we need not on thatféucébunt
reject the hypothesis of autoregression. « N

3-4. Series 1 was divided into 8 sets of 60 terms each, (which. will be
denoted by 1, 1b, ..., 1h. For each of these subseries ¢hie first 50 serial
correlations were computed. The series were then joined in pairs, 1a to L&,
lcto 1d, leto 1fand lg to 1k, so as to form 4 serigs of 120 terms each and
again the first 50 serial correlations comput.ed,’\T‘he Tesulting series were
joined in pairs giving two series of 240 term# ‘edch, and the first 50 serial
correlations computed. Finally, the two serips"wére joined so as to form the
single series of 480 terms and again the.ﬁi:s'.t 50 serial correlations computed.
The resulis are given in Tables 3-1 an}i’é-ﬂ, and the correlogramsin Figs. 3-1
and 3-2. The theoretical correlogram.is also shown.

3-5. These figures bring oub,some remarkable results. For series of 60
terms the observed correlogkams differ very markedly from the theoretical
value in some cases; and fono case do they damp in the theoretical manner.
For series of 120, 240hamd 480 terms the differences are not so great, and
they diminish as thékeTies becomes longer, as we have every right to expect.
But even for a.?&iéa as long as 480 terms the failure to damp according to
expecta-tionig{ clear.

3+6. . 'The experiment was repeated with each of the other three series,
the only difference being that in these cases there were four series of 60 terms
each denoted by a, b, ¢ and & (the total length being 240 terms), and that
only the first 30 serial corvelations were computed. The results are given in
Tables 3-3-3-5 and Figs. 3-3-3-5. Again we have the greater damping for
the longer series and the failure to damp according to expectation for the
longest.

3-7. Tt is thus clear that on occasion the correlogram of a short auto-
regressive series fails to conform to expectation; and that it is the rule rather
* than the exception for it to fail to damp out in the manner of the theoretical
eorrelogram. This brings out very well a point which is often inadequately
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“TapiE 31. Serial correlations of series 1@ to 14, the eight
subseries of 60 terms vach composing series 1

Order i
of cor- la 13 le 1d le Lf 1y 1h
relation| :
1 0-776 0635 0727 0726 0797 9760 0-885 0-827
2 0-543 0-016 9361 ;  0-219 0-317 0-335 0613 0534
‘3 0-446 | —0-439 0183 1 — 0180 | —0:026 | —0-032 | 0420 0-25¢°
4 0-390 | —0-570 0050 ¢ ~ 0304 | —0-166 1 —0-193 | 0-283 | --0-018
5 0-376 | —0:334 1 —0-019 ! —0-192 | —0153 | —0-171 . 0145 | —0-232
6 0366 0-002 0042 | — 0042 | —0086 | —0-084 ¢ (026 | —0-388
7 0-334 0-229 0115 | 0040 0014 0026 , —0-08% | —0-472
8 0-342 0-348 0193 | 0-052 0-090 0115 © —0-0484 - 0-449
9 0316 0-20% 0209 ; —0-000 0-076 0-1t0 | —0:051\" —0-336
10 0-207 0660 0-105 © — 0031 | — 0108 | —0-033 | —D@O88"| —0-148
11 0250 | —0-300 | —0-141 | —0-023 | —0-374 | —0-283 | _0.175 0-057
12 0-342 | —0-543 | —0-347" ] —0-017 | —0-540 | —0-325 | {—p'281 0141
13 0-361 | —0-421 | —0-418 ' —0-098 | —0-425 | —0-299 —~0-416 0-188
14 392 0-025 | -~0-369 | —0:278 | —0-019 | —0-174 [3—0-509 ! 0-223
15 0-415 0408 | —0-181 | —0:412 1 0205 | — 084 | —0524 | 0215
16 0-336 9652 | 0021 | —0-338 0-374 | L9:080 | —0-495 0-219
17 0-207 (-441 - 0-182 | —0-086 G-300°\N20-001 7 — 0423 0147
18 0-333 0010 ©  0-232 0185 1RGNN 0-061 1 —0-318 0-(69
13 0354 | —0403 . 0-216 0-332 o-%; —0-068 | —0-213 0-051
20 0-386 | —0.564 1 0099 0-301 | — 00D © —0-081 | —0-099 0-039
21 0298 | —0:419 —0-080 0-149 | <0181 | —0-046 0-018 0-094
22 0-190 | —0-168 | —0-118 | —0-084N80-086 © —0-102 0105 0117
23 0-099 C-083 | —0-056 | —-2080]> 0101 : —0-240 0139 . 0014
24 0-104 0-331 0037 | —0-108 0210 | —0-347 0-149 . —0-079
25 - 0-097 0379 0-209 0003 0143 | —0-319 ¢ 0157 ; —0-i67
26 0-133 0212 . 0-218 | 00226 1 —0-117 | —0-164 0-180 | —0-341
27 0129 | —0-112 0238 ¢\ V0164 | —0-403 100 0-274 | —0-518
28 | —0-018 | —9-462 02106° 0-009 | —0-528 | 0-373 0320 | —0-601
29 ] —0-033 | —0-537 0085 | —0-127 1 —0-509 - 0-512 303 | — (597
30 | —0039 | —0198 ; _O:M0 | 0128 | —0-340 | 0-485 0-241 | —(+514
31 | —0-054 0335 |, £0167 | —0-088 | —0-163 | (-289 0-206 | —0:356
32 . 0073 1 0-6TKN=0-092 } —0-107 | —0-089 0086 ©  0-223 | —0-103
33 0-216 0521 b 0-027 . —0-256 0-048 | —9-081 0212 0-214
34 0-227 0-024 0:125 | —0400 | —0.015 | —0-05 0143 0442
35 0112 | {0*411 0332 | —0482 | —0-157 0144 | —0-018 0-572
36 | —0-042 {001 0-369 | —0-429 | —(-308 0386 | —0-133 0-548
37 . — 0058\ 0-506 0-301°| —0-250 | —0-318 0631 | ~0-174 0420
88 | —0-004% —0-280 0-185 | —0-082 | —0.128 0667 | —0-193 0-198
30 | — (s 0107 1 (0-084 | —0-001 0-124 0-381 | —03-281 | —0-115
16 | Lovs2 301 0-082 0084 0293 | —0:078 | —0-393 | —0-300
41 |aaD-272 0-549 0133 (-158 | 0173 | —0-426 | —0-420 | —0-518
42 0486 | 0-437 | (04196 0-249 1 — 0026 | —0403 | —0-204 | —0-624
AN —0-740 | —0-100 ©  0-106 0-232 | —0227 | —0-180 | —0-205 | —0-712
%4: —0:858 | ~0-559 1 —0-020 0-060 | —~0-305 | —0-000 | —0-263 | —0-752
5 | —0734 | 0429 | —0-138 | —0-027 | .—0-290 0-087 | —0-d4d4d | —0-725
48 | —0-494 0-067 | —0-231 0-047 | —(-300 0119 | —0402 | —0-558
47 | —0:384 | 0628 | —0-357 0-200 : —0-194 0-207 | —0-459 . — 0271
48 | —0-327 0-701 | — 0472 0446 | - 0-029 0238 | —~0-583 | —0-148 |-
49 | —(-278 1  0-312 | —0-545 0295 . 0278 | —0-085 | —(-503 | —0.024 |
50 | —0-304; —0-208 | ~0-508 | —0-031 | 0-476 | —0-867 | —0-175 181 |
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TarLE 3-2. Serial correlations of series 1, the two subseries of 240
each and the four subseries of 120 terms each

| Osasr | | ' lat1b+ | let1f+ @ Series 1
rc;%'aici-zni la+1d : lc+1d le+1f lg+1k Let1d lo+ih o botal
‘ i 0-702 0-726 0-748 0-842 o713 0-801 0762
2 0-260 0-292 0-319. 0-579 0-272 0462 0377
3 —g027 | —0-02¢4 | —0-039 0-347 | —0-033 0-172 0-079
4 —0118 | —-©0135 ~0:190 | 0146 | —0-132 | —0-011 | —0-067
5 Z0016 | —o0008 | —0-169 | —0:019 | —0-056 ; —0:095 —~0-078
6 0136 = —0:011 — 0088 | —0-134 0067 ~0126 | —0-039
7 0-218 0-086 0-017 | —0-224 0136 |- —0-123 | —0-007
8 0265 0-107 0087 —{-221 0176 —0:094 0622
9 0-208 0104 p-080 | —0150 0-141 — (064 18
10 0-034 0-055 | —0-003 | —0-068 0-039 — 0073} (0036
11 —g116 | —0-032 ! —o285 ' —0024 § —0-055 —0-119 & 20108
12 —0-17¢ | —0101 364 | —0-040 | —0308 © —0-139 h —0-145
13 —0-085 | —0:141 —0-261 ‘ —0492 | —0-080 ‘ — 0180, —0-128
14 G182 | —o-181 | —0-101 —0137 | 0005 | 606 | —0052
15 0398 | —0153 ‘ 0040 | —0277 . 0110 |, SR062 \ 0-029
16 0298 | —0-026 0086 | —0:193 | 0-163 4\ 0043 0-069
17 0-227 0-157 0050 | —0177T L 01884 —0-023 ] 0-065
18 0-007 0-283 o-005 © —0-132 0- 149 — 0020 ;0032
19 —0-179 0324 | —0032 | —0077 46 —0-008 | —0-007
20 — 0211 0242 | —0-073 | ~0017 | 8:609 —0312 | —0:028
21 —0-143 0-088 | —0-107 0-078 (= 0-007 ¢013 | —0-005
28 —0-049 —~G-017 —0-124 T 1EENNA 0007 0023 019
23 0-04¢ | —0-088 . —0-152 00600 —0-007 —0-017 0-011
24 137 | —0074 | —01ot | —0d3I 0-022 —0091 | —0:011
25 0-100 0031 | --0-140 | —0=33 |  0-089 —0:153 1 —0-041
28 0-007 0-065 | —0-087 |og0-244 | 0042 | —0386 | —0079
27 ~ 0133 | —0001 0-028 Py —-0302 | —0-006 } —0176 | —0-108
28 —0238 | —0-109 0-148 N —0-305 | —o0-082 | —0122 | 01268
29 0172 | —-0-192 o400 | —o281 | —01090 | -0085 , -—0118
30 —0-035 | —0225 6184 | —0-209 | —0-008 | —0054 — 0075
31 0117 | —0-204 ¢+ £\0'118 | —0-00¢ | —0:070 | --0-011 —~0-018
32 0-232 | —0I91 [N\ 0:067 0027 | —0-040 0-045 0-039
33 0196 | —0190%, 0091 0126 | —0-063 0-109 0-068
34 0013 | —0-¥36~ 0-135 6143 | —0-094 0119 0-048
36 —0-174 | -0 JU0 0-185 0108 . —0-117 0-080 0-008
36 —0:318 \’0-028 (193 0-051 —0-115 0-035 —0-087
37 —0:272 {0038 0206 ' —00il | —0-046 | —0-000 | —0-047
38 —oo7all)  0-092 9158 | —0-061 0043 | —0-086 | —0-023
39 0-082, 0098 0019 | —0C080 0-056 —0062 | —0017
40 @154 0088  —0175 ; —0-079 0038 —0-098 | —0030
41 PAANE: 0-076 | —0-342 | —0-044 0-014 | —0110 | —0-038
42 /N\0-021 0121 —0-365 0-054 0008 | —0056 | —0012
43\ ) — 0181 0-119 : —0-247 0-136 0-032 0032 0-033
44 — 241 0072 | —-0-124 ;  ©-125 0-009 0-085 0-055
45 —0-186 0-038 | —0-057 00478 0-001 0-099 0-048
46 0-004 0000 | —0-059 0-063 0-009 0-093 0040
47 0159 | —0028 | —0-039 0-044 0-018 0-093 0-041
48 o180 | —0-080 | —0-018 . —0019 | —0-0L5 0-093 0-035
T 49 0106 | —¢-189 | o021 | -0077 | —0087 0-099 0-022
50 | —0079 —0-252 | 0096 | —0-106 | —0184 0-115 0-007

29
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stressed in statistical studies of time-series: even a number of terms which
is ‘large’ in the usual sense of the theory of random sampling may be ‘small’
for time-series. If we have 480 independently chosen members of 2 population
we can make estimates of its parameters with some exactitude; but 480
consecutive terms of a time-series may not provide at all an accurate idea
of the process which generated it, even if that section of the series was
chosen at random. The terms themselves are not independent one of the
ﬁext.

3-8. So far as oscillatory effects are concerned the failure to damp does
not appear to affect the period of the undulations in the correlogram so
much ag their amplitude, so that an estimate of the avtoregressive period
may be derived from an examination of the correlogram itself, MNevertheless,
we may notice that this estimate is not always a very good one. For the full
series of 480 or 240 terms as the case may be we have N

Mean l;IJstance
Autoregressive betygén troughs

Series period from (3:4) in the correlogra.m
1 9-25 A 833
2 1953 AN 120
3 §-92 o\ 7-67
4 200 W) 2-80

The agreement is fair for series 1, 8, a:iid_'éi but poor for series 2.

3-9. The explanation of these eﬁects seems to me to be that, for short
series, there are only a few osdillations available. The variance of a short
series should not differ systematically from the parent variance to any
serious extent; but the Qo&rlances may gystematically exceed in absolute
value the correspond_uk\parent covarianee. In fact, as we proceed along the
series the oscillatiofs’ change in phase and when we have gone far enough
will be quite untelated in phase to.the initial oscillations; but if we only go
so far as the, sebond or third oscillation, the final oscillation may not, so to
" speak, hai&z Had time to get very much ouf of step with the first. In eon-
sequengé the correlations for such a series will tend to be higher than those
for trhts Infinite series (Wh.lch explains the failure to damp) and may fail to
ekpmsaa the autoregressive period (which explains the differences between
that period and observed oscillations in the correlogram). Furthermore,
a8 has happened in series 14, a short series of 60 terms may show what
appears to be a trend, which is reflected in the correlogram and obscures the
oscillatory effect.

3-10. Inshort, it appears that for oscillatory series the operative sample
number is not the numher of terms in the series but the number of oscilla-
tions which it covers. Inseries 1, for example, there are about 57 oscillations -
of the autoregressive period and it is 57, not 480, which is the cffective gsample
number. KEven this may be deceptively high, if there are traces of correlation
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between the periods (however defined) of successive oscillations. Again, in
series 2, there are only about 12 oscillations of the autoregressive period,
and it is not nearly so surprising as appears at first sight to find the correlo-
gram possessing a mean distance between trougha of only 12 units against
a theoretical value of 19-25.

TABLE 3'3. Serial correlations of series 2, the two subseries of 120
terms each and the four snbseries of 60 terms each

{ Order 1st 2nd 3rd 4th 1st 2nd .
" of cor- | B0 terms | B0 terms | 60 terms | 60 terms | 120 terms | 120 terms Beries 2
relation|  (2a) (28) (2¢) @d) | (2a+2b) | (2c42d) | D totEL
1 0774 | 0910 0804 0-839 0-863 0825 | (u:850
3 0-437 0-731 0-475 0-584 0-613 0582 L& 0606
3 0-131 0-550 0-125 0-256 0-379 o218 ()" 0-350
i | —014d 0377 | —0-219 | —0-009 0160 | —0-076- 0127
5 0324 0-230 | —0-392 | —0-237 0001 | —0@8RY| —0-Ddd
6 —0-307 0130 | —0:355 | —0-337 | —0060 | L0854’ | —0:124
7 — 0190 0048 | —0-179 | —0-370 | - —0-075 LSS a21 | —0-147
8 _ 0068 | —0-086 | —0008 - —0-287 | —010&8\ 0225 | —0138
9 G154 | —0-138 0-048 | —0-151 —0 07\ —0120 | —0-094
10 0825 | —0-202 | —0035 0014 %;r —0043 | 0057
11 0374 | —0248 | —0-105 0-148 0-036 | —0-032
12 0368 | —0279 | —0-137 0-207 \o 043 0-682 | —0:015
13 0320 | —0-276 | — 0131 0-223 N\ 0056 0099 | —0-009
14 0165 . —0280 | —0-190 0197 > —0-101 0056 | —0:040
15 0007 | —0308 | —0-211 011 +| —0-170 | —0-003 | —0-076
16 —0116 | —0308 | —0180 | —0043 | —0218 | —0-092 | 0128
17 —0212 | —0254 | —0171 | ~0®07 | —0233 | —0-170 | —0-166
18 —0208 | —0212 | —0-136 |%x0310 | —0-209 | —01981 | 0172
19 —0124 | 0150 | —0-082 TN0318 | —0:147 | —0-147 | —0-151
20 —005¢ | —0-027 0-L8N| 0202 | —0049 | —0016 | —0-100
21 0035 0141 0:266 | —0-013 0-043 0115 | —0-029
22 | —po084 0-300 |, »0:.328 @218 | 0:106 0-211 0-G40
a3 — 0201 0429 | % N\o'308 ¢-382 | 0-140 0-248 0-698
24 —0-310 o539 N V0220 (-488 i 0189 0-221 0-143
25 —0:317 0-5818)> 0-105 0-467 0-240 0-162 0-190
26 —0-402 06067 | —0-019 | 0-265 0-260 0-060 0-186
27 —0-432 &6)2 | —~0187 | —0-075 0230 | —0078 0-135
28 —0-244 | {ApG06 | —0.282 | —0-366 0232 | —0171 0-099
20 1 00370630 | —0-224 | ~0-557 0269 | —0-179 0-097
30 ] 0-208 N 0648 | —~0-269 | —0-649 287 | —0-206 0-094

WY
N

3-11es These results are, in a way, very disappointing, They imply that
before Wé can approach reasonable certainty about the true nature of the
generating process of a series and estimate its fundamental constants a
very large number of terms is required—something of the order of thousands
rather than hundreds. This is unfortunate, particularly in economic work
where series of such length are very rare; but the position has to be faced.
As a general rule the correlogram even of short series will indicate whether
" damping exists and provide some evidence on the questions whether the
series can be regarded as autoregressive, It is when we come to determine
the damping factors and the other constants that difficulties arise. One
such has been deali with in the foregoing paragraphs. Another, the com-

KOM 3
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plications due to superposed. variation, I have discussed elsewhere[10].
I proceed to consider a third. _

3-12. Series 2 and 3 were combined to form a fifth series of 240 terms
by adding the nth term of one to the nth term of the other. The serial
correlations are shown in Table 3-8 and the correlogram of the full series
in Fig. 3-6.

TapiE 3-4. Serial correlations of series 3, the two subseries of 120
terms each and the four subseries of 60 terms cach

Oxrder 1at 2nd ard 4th st 2nd Eonies 3

of cor-| 60 terms | 60 terms | 60 terms | 60 terms 120 terms | 120 torms [ (3¢ 19:&1

relation]  (3a) (3%) (3¢} (3d) | (Ba+3b) | (Bo+3d| ! to
1 0-639 0-615 0610 | 0620 0-634 6l 0623
3 | —o012 | —0081 | —0142 | —0134 | —0-040 | <042 1 0105
3 | —0484 | —0-p02 | —0-693 | —0¢32 | —0-506 |~0W73 | —0-600
4 | —0563 | —0408 | —0688 | —0:600 | —0-540 AHN—0-641 | —0-598
5 | —0268 | —0197 | —0239 | —0163 ~0-230 () —0167 | —0-181
8 0137 0-096 0268 |  ©-308 0240 0-332 (260
9 0-257 0-293 0-465 0453 ‘ 0297 0-485 0-402
8 0-083 0-345 0-3t1 | © 0333 : Q1L 0-283 0-247
9 | —0-167 0-207 0041 0-102 ¥HM0-037 | —0-036 | —0-021
10 | —0253 | —001% | —0154 | —0079{|&—0185 | —0-248 | —0-201
11 —0122 | —0:331 | —0-194 | —0J97N] —0239 | —0-246 | —0-225 !
12 0-025 | —(415 | —0161 | —028% | —0-198 | —0106 | —0-135
13 0090 | —0-223 | —0150 | <0M45 | —0-039 0-030 | —0-009
14 0-072 0117 | —0094 | JN0-105 0-167 0-123 0-125
15 | —0084 | 0-361 0-044 oy 0382 0200 o170 0-189
16 | —0-281 0-358 0-234" 0-496 0-092 0177 0-159
1T | —0145 0-226 0Bl 0288 | —0:020 0-102 0-055
18 0057 0-002 Q173 | —0144 | 0075 | —0-043 | —0-089
19 0234 | —0211 | {80149 | —0489 | 0041 | —0-202 | —0Idd
20 0401 | —0-270 {20408 | —0-466 0081 | —0:235 | —0101
21 0-441 | —0-110{ ™ —~0-380 | —0C-067 0197 | —0-082 0-024
22 0178 051 —0-063 0-356 0-178 0-176 0-141
23 3 —0-138 §-302 0-358 0-561 0-053 0-349 0-151
24 | -0-308 |\ 0251 0-388 0281 | —0-125 0-275 0-054
25 | —0-269 |\0-005 0364 | —0-172 | —0-234 | —0022 | —0-074
26 | —0-0059M-0-269 | —0163 | —0366 | —0181 ; —0-813 | —0-199
27 0-246L0 —0362 | --0-623 | —0-225 : —0-018 | —0:380 | —0-197
28 0987 | —0287 | —0:867) 0-096 0090 | —0-168 | —0-078
2g | 011 | 0039 | —0-228 0-261 0-038 0-175 0-075
80 |ax0518 | 0133 0-458 0164 | —0-102 0-402 0-174

7\
Pdking into account the known differences between theory and observa-
tion for series of this length we should have seen little or nothing in the
correlogram of series 2 and 3 to indicate that it arose from the sum of two
series with different autoregressive constants. On the face of it, this is a
correlogram of a single damped series of the simple linear type defined by
(8-1). The correlogram may, therefore, be insensitive. It indicates, correctly,
that autoregression exists. It will give us an approximate idea of the kind
of simple scheme which would account for the variation. But it does not
establish that such a scheme is the only one and we are always left with the

possibility that our model oversimplifies the reality. This, of course, is true
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of any scientific hypothesis, but whereas we can usually conduet further
experiments to test a hypothesis in physical sciences such a course is rarely
open to us in economics. The best we can do, as a rule, is to predict the next
terms in the series and then wait to see how far the prediction is verified.

TaBLE 3'5. Serial correlations of series 4, the two, subseries of 120
terms each and the _f0ur suhseries of 60 terms each

QOrder : 1st 2nd Srd- 4th 15t 2nd Serios 4
of cor-| 60 terms | G0 terms | 60 terrns | 60 termas | 120 terms | 120 terms | & B“Q: 1
relation| (4g) {(4%) (de) (4d) (ta+4b}) | (de+ 4:1) RQona
1 — (699 — (744 —0-675 — 0346 —0-719 -0 657 - Lu-ss:;
3 0-257 0-387 0-129 0-027 0-312 0-069) 0174
3 0-249 — 0021 0-289 0443 0-127 0:352 0-260
4 — (560 — 0255 — 0397 —0-512 | —0414 £0421 —0-414
5 © 0569 0-330 0-210 0-308 0-454  NG-206 0-305
6 —0-326 | —0-352 —0:077 | —0008 | —033Y 0008 | —0127
7 — (047 0-204 0-092 | —0-252 0088 —0:090 | —0-007
3 0313 —0-243 — (252 0-309 LN —0-013 0-018
9 — (376 0144 0-430 | —0-103 | s0856 0-224 0-064
10 0-218 - 0-013 —0:413 i —0-194 | 0134 — (334 —0121
11 0-038 —0-049 0-131 0388 .\ 20018 0-230 0-107
12 —0-310 0-145 0244 | —0-393 ) —0-104 0-602 —0-036
13 0-851 | —0-177 —0-523 ¢33 0-144 | —0-151 —0-018
14 ~0-851 ; 0108 0-537 § —0:147 — 0211 0174 | —0-006
15 0-195 —(-116 —0-275 ~—o 078 0-172 —0-070 0-045
16 —0-028 —0:007 0:012 |88 0299 | —0145 0018 — 0049
17 — 0100 0141 0-090.) ‘—0-370 0-112 —0-06% | —0-005
18 0-178 —0-280 — 0038, 0268 | —0-068 o153 0070
19 —0-184 0-362 —geps | —0-079 0-026 —0-180 | —0-008
20 0-126 —-0-317 | _S0W7L | —0-084 0-040 0065 063
21 0020 1 0189 30-211 0174 | —0096 0-113 0-015
22 ~0-118 1 0-06I%N "—0-322 — 0146 0-159 —0:241 —0-088
23 0-275 —-160 0-378 0075 | —0-116 0-279 0113
24 —0-344 0147 —0-320 | —0-010 0012 —0:218 | —0-125
25 0311 a4 0140 | —0-071 0-054 0-057 0-056
26 —0-088 | {273 0-147 0218 | 0:017 0190 |. 0103
27 —0-209 {A0-354 —0-345 | —0328 | —0-114 —0-314 | —0-221
28 056NV 0321 0-370 0-234 0-208 0234 0-22%
29 —0-%3 —-90-133 —0-235 0041 —(-222 —¢-001 —0-083
30 0455 ~ {172 0127 | —0251 0-167 — (158 —0-083
AN

N \ N
& \

3 13 For purpoge of illustration and later reference it may be useful
to give at this stage the correlogram of the Beveridge series (Table 1.6).
The first 60 serial correlations are shown in Table 3-7 and the correlogram
in Fig. 3-7. It will be cbserved that the correlogram is heavily damped,
indicating autoregression. There appear to be present two oscillatory move-
ments, one with a period of about 15 years and a smaller one with a period of
about 5 years. On this evidence alone we should see no reason to suspect
the existence of more than two. In fhe next chapter we shall see how greatly
this conflicts with the results obtained by Sir William Bevendge himself in
an analysis of the same series based on the periodogram.

3-2
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TanLE 3-6. Serial correlations of series 2 and 3, the two subseries of 120
terms each and the four subseries of 60 terms each

Order | g | ona sed | 4th 1st 2nd S;;lgssz
relation] 60 terms | 60 terms | 60 terms | 60 terms | 120 terms 120 terms | jp gotal
1 0-714 ! 0-794 Q650 0-717 0754 0-680 722
2 o215 3408 —0-049 0-189 (0-301 - (081 o197
3 —0-178% 125 —0-566 —0-242 , —0:055 —(-406 —(-216
4 —0:371 —{-015 - {0617 —1(+319 — {226 — {0457 —{32b
5 — 0335 -~ 046 —(-314 —0-111 —(221 —0-180 —0-171
i —i»15¢ ; —0-015 073 0-200 —0-117 01594 0061
7 — (22 0-036 0-324. 0358 . —0019 0-344 (¢-189
8 —0-028 {-065 0354 357 —{-008 0263 B 132
] 0017 —03tl 0-121 O-189 — 00089 0-032 0-006
10 00102, —(-195 — 3070 0-010 — (-046 — (145 4 ‘\— 106
11 2203 — (-394 —{0-130 —0-110 —0-096 — (156 N 0133
12 (227 —0-482 | —0:304 | —0-127 —{-134 —0-09% — 0086
13 0171 —382 © —0-049 =65 —0-1086 6-100 —0-014
i4 0-037 : —0-228 — 0030 0-103 —0-060 {04163 0-050
15 — (1062 — 0144 0-017 (0-201 ‘ —0:083 AN 0754 O-060
16 —1-323 —0-087 0099 ‘ 0327 —(-1294]% 0-077 0-006
17 — (247 —- 0012 0-061 | O-117 —0easy 1 —0-077 — 0072
18 —0-017 —0-005 | —0-087 —:213 — (R013 —0-221 —1{-133
19 0195 — 0+ 0fid — (1254 —0-438 | 0003 —0:27L —0:146
20 0-402 — (-060 —-258 — 360 ,‘,\ 072 —}-148 —-072
21 0442 | 0-036 — 0094 —0-008. 5, 0-118 G-085 Q046
22 0220 170 0-173 0387 0094 {308 0-150
23 —{-080 0-208 0395 0-549 0-035 0-380 0175
24 —0-307 0400 | (0-420 + 0378 ! 003 (231 ¢-1190
25 —(-335 0370 | 0141 0023 - 0-005 —0-080 - 0018
24 —0:244 0272 . —0-273 NN—0:324 0007 —{-344 —0-131
27 —-072 0189 | —0-5643 1" — 0407 0-044 — 0376 — 0144
23 — 0001 0-134 , —0-490 —0-277 0-G68 ~0-160 —0-047
29 ~0-(80 0179 —0%34 | —0-095 0-071 0-168 G-106
30 : — 0245 263 | LJ\0412 0018 0-06% (-334 0-209
\\
10 N
| .

0 | ‘/\t ! /X /
DERYARY Y i

| . | |i-

—02 _
Y
L 1

Fig. 3-6. Correlogram of the sum of geries 2 and 3
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TasLE 3-7. Serial corvelations of the Beveridge
trend-iree wheat-price series

Oggi;?f Value of - Ogg:;)?f Value of O;gf:‘a?f Valus of
ladion, k correlation, r, lation, & correlation, 7 Intion, & correlation, v
1 0-562 21 —0:021 a1 0008
2 0-103 a2 . —0082 42 0-034
3 —8-075 23 - 0-088 43 0-065
4 — 0092 24 —0-084 4 0-099
5 —{-082 25 — 0076 45 ; 0-009
6 —0-136 26 —~0-001 T — (036
7 —0-211 27 —0-052 47 i —0-013
8 —0-261 28 —0-032 48 0042
9 —0-102 29 —0-012 49 04062
10 —0-070 . 30 0-059 50 QL]
o1 —0:003 31 0060 51 A, 0:050
12 —0-015 a2 - -D08 52 ¢ \Jy0-000
13 {012 33 L —0-039 53 NN L0087
14 0-047 34 ] 0-007 54 MW —0053
15 0-101 - 35 0-056 554 —0-078
16 0-158 26 0-010 56 —0:106 |
17 109 a7 —0-004 (BT — (0084
18 0-002 38 —0-015 N85 0018
19 — 0075 39 —0-047 759 0-003 :
20 —0-062 40 —0047 60 0010
0.'\ ’ -
o3k ' 5
),’“
T02 L n
& 01 ’/\\~ =
£ 4 R
W Yalues
K N VAR N’a
Pl 4 : i -

— 02

3-14. (1} For amforegressive series of finite length the correlogram
differs systeratically from the theoretical results appropriate to an infinite
series, in that it fails to damp according to expectation.

(2} It appears likely that very long series are required to give decisive
indications of the true nature of the generating process.

{3) Correlogram analysis appears to indicate reliably the existence of
autoregressive effects, but for short series iz somewhat insensitive.

(4} For some purposes in the theory of time series the material sampling
number, from the point of view of judgment of experimental crror, appears
to be the number of periods covered, not the number of terms in the series.



AUTOREGRESSIVE SERIES*

4-1. The technique of periodogram analysis has been briefly described
in Chapter 1 (1-12-1-16). I proceed to give the results of applying that
technique to the first three experimental series.

4-2. Tor series 1, the standardized ordinates of the periodogram were
caleulated for each integral trial value from 2 to 50 inclusive and are shown

CHAPTER 4
THE PERIODOGRAM OF

in Table 4-1, the periodogram itself being given in Fig. 4-1.

TapLE 4-1. Standardized periodogram crdinates for series 1

and integral trial periods from 2 to 50 inclusive O\
. - 7S
Triul Trial _ Trial | . g
period, p E{p) period, p H{p) period, p |, \::‘ E(p)
2 0-0001 19 0-0000 35 0F 00220
3 0-0002 20 0-0510 36\ 0-0174
4 0-0000 21 0-0051 3%,/ 0-0083
5 00040 22 0-0212 38 0-0041-
6 0-0007 23 0-0011 39 0-0176
7 0-0145 24 4-0088 (> 40 0-0255
8 0-0136 25 0-0283 41 0-0372
9 0-0062 26 0-0295N\ 42 0-0423
10 0-0022 27 0-0229.) 43 0-0317
11 0-0052 28 0-0186 44 0-0095
12 0-0163 20 Joe22 45 0-0192
13 0-0097 30 SA0F0039 46 0-0188
14 0-0199 31 %N 0-0005 47 0-0093
15 0-0061 32 0-0061 48 0-0047
16 0-0188 33 A 0-0033 49 0-0005
17 0-0107 E7ANN 0-0056 50 0-0077
18 0-0120 ¢\J
X,
N
A\ !
A«
7,
. i \:"\;Q~
0-04 N
O '
YT
N
0-02 | /\/ A=
! k ]
10 20 30 40 50
Values of p

+ Most of this chapter was incorporated in a paper “0On the analysiz of cacillatory firne.

Fig. 41, Periodogram of series 1

series’ read bofore the Royal Statistical

made to that paper for the consideration of &

Socicty on 17 January 1945. Reference may be
ome further points and to the report of the

ensuing discussion for additional comments.
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This series has a m.d. (peaks) of 5-05, 2 m.d. (upcrosses) of 830 (see 6-4
and 6-10) and an autoregressive period of 9-25 (1-26). A peak at any of these
points in the periodogram would at least be understandable. Actually there
are about a dozen peaks, two of them, at 20 and 42, standing out as offering
- substantial evidence of significant periods, but nothing at all striking in

the very places where we might expect them,

43, Certain tests have been advanced to express the probability that

peaks of a given magnitude can arige in random gampling. In my view they
are unsound,* but if they are applied they give significance o the periods

TaBiE 4-2. Standardized periodogram ordinates for series,d and
- certain non-integral trial periods between 8 and 9 utits

.

Trial Trial | Trigl &\ P, !
|! period, p Blp) period, p ! #(p) period, » }_-74(10} ‘
‘ 8000 - 0-0136 8-333 0-0177 R

8167 0-0115 8-400 00188 | {850 0-0105 |
[ 8200 0-0045 $500 00199 I Y8800 0-0028

8250 00129 8-600 0:0052° X)) " 9-000 0-0062

oy,
0-02 .

B(p)

0-01

' : ' i

BINT _ &2 §-4- 88 88 g9
O : Values of p

Fi'g.\’ll\\-ﬁ.“ Pbriodogra}:_ﬂ of series 1 for nen-integral trial values between 8 and §

at 20,26 and 42. All three are illusory in the sense tha; they arise as sampling

ffects in a series generated by a process which gives no such periods either
in*the strict sense Or as mean values in distributions. The periodogram is
about as misleading as it could be. '

4-4.  According to the Schuster theory there will be, corresponding 6o a
harmonic of period p in the original data, a peak in the periodogram of:
width 2p?/(mp) or roughly 2p?/N, where ¥ is the number of terms in the
series. Calculating ordinates at integral trial periods only may therefore
allow certain harmonies to slip through the net if 2p* NV is much less than
unity and narrower intervals are required for smaller values of p. Table 4-2

* Hee the paper referred to in the pravicus fooinote,
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and Fig. 42 show the periodogram for cerfain non-integral values from 8to 9.
We now find peaks at 8-33, 8-5 and 875, the latter probably being negligible.
Even if we take the most favourable view and regard the other two as mani-
festations of a single period (2p%/N being about 0-3) the peak is far less than
that of the three spurious periods and, indeed, Jegs than those at 22 and 35
as well,

TABLE 4-3. Ordinates of the Whittaker diagram for series 1
and integral trial periods from 2 to 50 inclusive

Trigl . Trial | . Trial R
period, p : Mo period, » Ty period, p Wz
2 0-0000 19 0-0155 5 0-0832 * L b
3 0-0002 20 00629 36 0-0582,
4 0-0008 21 0-0312 37 0-0843 N
5 ¢-0042 22 0:0463 38 00492
8 0-0009 23 © 00548 39 \0563
7 0-0154 24 0-0421 40 041156
8 0-0337 25 0-0692 41 LK 01207
9 0-0075 26 0-0518 42 A5 01076
10 00086 27 0-0397 43 N 0-1146
1 0-0075 28 00682 FENS 01249
12 90176 29 00361 45 00639
13 0-0167 30 ' 0-0150 o 40 0-1185
14 0-0367 3l 0-0451 DT 0-0441
15 0-0070 32 00612 N 48 0-0810
18 00348 33 0-6804 2NN/ 49 01103
17 0-0361 84 00857 \) 50 0-1044
18 0-0207 _ :

0-10

008

008

004

002 —

10 20 30 40
Values of p

Fig. 4:3. Modified form of the Whittaker pericdogram of series 1

4-5. Asamatter ofinterest ] give the ordinates of the Whittaker periodo-
gram (1-6}in Table 4-3 and the periodogram itself in Fig. 4-3. Tt will be seen
that the ordinate increases systematically and the real test lies in the



Fig. 4-4. Periodogram of sories 2
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TaBrLE 4-4. Standardized periodogram ordinates for series 2
and integral trial periods from 2 to 40 inclusive
Trial T'rial Trial I
period, p E(p} period, p E(p) . period, p B(p}
2 0-0000 15 0-0147 28 0-1448
3 00003 16 00082 20 0-0053
4 0-0004 17 00543 30 0-0425
5 0-0019 18 0-0147 al 0-0321
6 00000 19 0-0200 32 00151
7 0-0017 20 (0592 33 0-0293
8 0-0044, 2] 0-0241 84 (0465
9 00115 22 0-0090 35 . - 00561
10 0-0006 23 0-0184 36 0-0635
11 0:0109 24 00221 37 o 0oTsT
12 0-0257 25 0-03%6 38 00747
13 0-0375 26 : 00842 30 LNV 00598
14 0-0163 27 | 0-1349 20, 0-0529
P (‘. .
\\
\\“
0'14 ’\s.
012 o
010 O _—
N\
S |
0-08 \ d__
¢
xt\"’ t
0-06 “_\‘.‘ ‘
TR | \ |
002 . '
N /
0-02 _._\__ Y O i
7
0 20 20 40
Values of p
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divergence of particular values from the line #* = kp. There 1s much the
same sorb of fluctuation as in the Schuster form, and it is even more difficult
to interpret; for in the latter a peak at trial period p can only correspond
to a harmonie of period p (if it indicates a harmonic at all), whereas in the
Whittaker form a peak can arise froni harmonics with periods which are
any integral multiple of p.

TABLE 45, Standardized periodogram ordinates for series 3

and integral trial periods from 2 to 40 inclusive

[ - .
' Trial TFrial Trial .
| period, p E(p) period, p E(p) peried, p Bip)
2 0-0000 15 00047 | 28 00003, "N}
3 0-0004 16 0-0167 29 0-0018 N
4 0-6093 17 0-0187 30 0-00N "
5 0-0047 18 0-0165 31 0-9047
6 0-0457 19 . 0-0008 32 " 00057
7 0-0533 20 0-0009 33 L& G071
8 0-0277 21 0-0041 34 L7y 0-0088
) 0-0057 22 0-0013 35 4 00047
10 00136 23 0-0087 R 0-0034
11 0-0210 24 90063 3q) 0-0019
12 00009 25 00027 /538 0-0031
13 0-0020 26 0-0017 +*{ a9 0-0011
14 00068 27 0:0018 SN 40 0-0012
N
0-04 —£S
H{p) X
\.
0-02 f
10 20 30 40
Values of »

Fig. 4-5. Periodogram of series 3

4-6. For series 2 the Schuster periodogram was computed for all integral
trial values from 2 o 40 inclugive, the ordinates being given in Table 4-4
and the periodogram in. Fig. 4-4. There are fewer serrations in the periodo-
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* gram, but peaks appear at 13, 17, 20, 28 and 37, the last but one being

particularly striking. The m.d. (peaks) for the series iz 5:57, the m.d. {up-
crosses) 12-39 and the autoregressive period 19-53. Once again we reach the
conclusion that the periodogram is grossly misleading.

TaBLE 4-6. Standardized periodogram ordinates for series 2 and 3

and integral trial periods from 2 to 40 inchasive

Prial Trial . Trial 1
period, p E(p) period, p {p) period, p B(p)
2 | 00000 | 15 0-0055 28 00777
3 0-0003 16 0-0019 29 00494
£ 0-0005 17 0-0323 30 0.0170
5 0-0023 18 0-0303 a1 A 00079
6. 0-0243 19 0-0120 32 4NJY 0-0051
7 0-0194 20 0-0152 33 N 7 00125
8 0-0157 21 0-0034 34, \ 0-0187
9 0-0004 22 0-0023 353 0-6198
1 0-0048 23 0-0015 ~36 00249 .
i 0-0305 24 0-0075 7 0-0285
12 0-0088 25 00139 PN\ 38 - 0-0260
- 13 0-0109 26 . 0-0350 ' 39 0-0219
4 0-0201 27 . | 00710 N 40 0-0173
’x.\
0-10 N
0-08
E(p) N
0-06 L
N\
004 '.. \
MWK
O3
."\Q.
ol O A A
002 s ‘
O /
_ 10 20 30
Values of p

Tig. 46, Periodogram of the sum of series.2 and 3

4-7. The experiment was repeated with series 3, the ordinates being
given in Table 4-5 and the periodogram in Fig. 4-5. This series hag g m.d.
(peaks) of 562, a m.d. (upcrosses) of 621 and an autoregressive period of
6-92. This time the periodogram is nearer to the kind of figure we are
entitled to expect from a reliable guide. It has a major peak at 7, but there
are still minor peaks at 11, 17, 20, 23 and 33.

-
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4-8. Tt is noticeable that the periodogram of series 3, which is the least
damped, is the least misleading, whereas that of series 2 for which the
damping is greatest is the most misleading. General considerations would
also lead us to the conclusion, supported by these experiments, that the
greater the damping the greater the effect of the disturbance function and
hence $he greater the liability to spurious peaks in the pericdogram due to
chance effects.

4-9. The periodogram of the sum of series 2 and 3 is shown in Table 4-6
and Fig. 4-6. There are now appreciable peaks at 6, 11, 17, 28 and 37. The
general conclusion of unreliability is confirmed.

TN
4 \' A
"N
Ny
0-04 P H- [~ {1 = ——
‘\' \
(Hp) }
G-02 U,
N '1 \J.-
20 30 40 50

o\ Values of p
Fig. 7. Periodogram of t{g'\ﬁ‘m}eridga series for integral trial periods up to 50

4-10. With these redults in mind we may reconsider the periods pro-
posed by Sir WilliamBeveridge after an exhaustive analysis of the data of
Table 1-6. In Figl?d7 I show the periodogram drawn for integral trial
periods from 2\;@50 Sir William actually carried the analysis as far as 80
and examingd\a great many non-integral values. In consequence he sug-
gestedolg"i}éi'iods, whereas our diagram reveals only 10. However, for
purposes) of comparison with the results already obtained, our figure is
probably the better.

In fact, the general appearance of Fig. 47 is quite like those obtained
from the artificial series. There is the same serrated course along the periodo-
gram and the same occasional appearance of marked peaks. It seems to me
quite evident that Sir William’s periods could be just as unreal as those
found in the artificial series. The collateral evidence points in the same
direction. For instance, the correlogram (Fig. 3-7} affords strong evidence
of a heavily damped series and shows only two periods—which, by the way,
coincide with two of Sir William’s 19. One can never prove mathematically
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that the series is not the sum of 19 harmonics and a random element.
Mathematically it may be so. But it seems to me that the overwhelming
balance of evidence is against this multiplicity of periods. Those who eling
to the reality of their existence are under an obligation to bring forward
much more convincing evidence before the statistician can regard them
asg even probable. '

Summary _ .

4-11. (1) The periodogram of an autoregressive series may give quite
misleading results by failing to show existing oscillatory effects and, what
is worse, by indicating the existence of significant effects where none exists.

(2) It seems that the heavier the damping in the series, the ihore likely
are spurious effects to appear. N

(3) Where, therefore, serial correlations or other eﬂdence indicate
damping in the dependence of successive terms in the Saries periodogram
analysis is dangerous. I doubt whether in the mdlo(ﬂiy of eases it is worth
the labour of computation.

CHAPTER 5

VARTIATE-DIFFERENCES O¥
AUTOREGRESSIVE SERIES
RS

5-1. We shall zeguire some expressions for the theoretical values of
reduced varianges derived from variate-differences of an autoregressive

series of typ&'\~ Uggg T+ AUy + U = 6. (5:1)
The solut}bn of this equation is '

™

AN Z FTARIR ' {5-2)
.

where p sin &4,

- Jw=a
and hence £, = 0, £, = 1. The quantities p and & are defined in (3-3) and
(3-4). We then have
W= &6 +E16+Eae y + 56 ot ...,
Uy = oo+ Er6pn F L6+ Gpea t -
and hence ‘ Avty = 11y 4

= g0€£+2+ (E1— Eterat+(Ea—E) e+ .. (5-3)
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Thus, for the infinite series

4
T B G P (BB
= 5% + }gu (Agj}z . {5-4)
In a similar way we find ’
2, @
T gy -2+ T AP, (5:5)
. =
and generally
A : i 2
gl (e o

+ {g:.:— —(k) Erat (k) [T ( )gu} + E (Akgj}z A (v- 6)

We’ proceed to evaluate the last term on the right. Conszdeia the first

difference of 4= prein (G + ). \\ (8-7)
We have AL = p{psin{ft+ o+ 0)—sin (0F + )} v
| = pifsin (Gt +oc+ ), R\ ~  (58)
where . : ﬂcos¢=p0050—1=.~g;l
peing = psmﬁ =2 ,‘/(b——;)
and hence - ' f= ,J(l 4‘“ +b}, | A5-9)
\/{46 a?)

ta{Q ez - (5:10)

It follows by a repebitioq.df.the process that

”ﬁf‘:é' = ptf%gin (68 + b+ ). (5-11)
o \ 4
Hence < ﬁ (Akgg)g = 4bﬁﬂ;3{ Y, p¥sin?(6j + kgﬁ)}

which, on\ anmatlon of the trigonometrical series by usual methods,
reduces‘t{) -

24% | 1 cos 2l boos (2 — 29)] 2% sin (k¢ — x)
B—a?|1-b (A+bE—az db—a|l— b [(T+bp—a?)’
where rainy = 1—bcos2l = 1+b—3a?, (512)
reosy = bsin2f = -6—;’1/(4&——@2),
r2 = (L+b) —a?,
: __2(+b)—-a?
and hence. tany = o~ & '(5-13)

KoM ) . 4
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This gives us the required sum in (5-6). The other terms can be evaluated
from the lower values of £ and hence var (4%, is ascertainable. For the
-reduced variance used in variate-difference analysis we then have

_ var(dFw) : -
Ve = G14
k
52, To illustrate the caleulations let us work ont the values of ¥, for

geries 1 up to &k = 20.
In this case @ = — 1-1, b = 0-5. Hence, from {5-9),

B = (1 +a+b) = j(0-4) = 0-682,456. ~ {5-15)
Also foosd = ~i2 = — (45, A
_ . O
Hence  cosg = —0-7115, ¢ =13535° (5:16)
From (5-13) 7%= 2:25—1-21 = 104, » = 10198

1 ~\
reosy = ?1\/{2— [-21) = 0;48885,

cosy = 0-4794, x =/BI'36°. (5-17)
Ag a check in the first instance, let us.ﬁﬁ&\ the value of var (A%), i.e. the
variance of the series itself. This ig kn()iwi to be[10]

1+6 N :
4 = - .1
T+ b ‘2}v¢re 2-8846 vare. (5-18)
From (5-12) with & = O we ﬁnd the other ferms in (5-6) vanishing in this case,
% (O 1, sin(—y)
V&I‘\S\ 4«6 @ |1-b " {(1+b)2—a?}

R, - 2 { _ sin 61- 36°}
LSO Tom 1-0198
\"\" — 2.8846, = (5-19)
which chedks with (5-18). '
' The&% obey the relation .
O £y gt afy, +bE =0, (5-20)

with the initial conditions £, = 0, £, = 1, and can be calculated from this
formula. or from 2
£ = Jidh— 2);_9 fgin 6%, ) {(5-21)

They are shown in the first column of Table 5:1 for a = —1-1, b = 0°5. By
writing zeros for values prior to £, and taking differences we find the terms

S e N T (5-22)

appearing in (5-6). The successive differences are shown in the table.
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Tanir 5-1. Illustration of the calenlation of sums of

squares of type (5-21) for series 1

51

; ] |
(1) (2) : {3} (4) {6)
Values of & A%, A'g, A2 4%, At
0 0 4] [0 0 0
1 1 =1 1 -1 1
2 11 —01 —09 1-9 —2.9
3 071 0-39 — (449 — (-4t 2-31
4 0-231 0479 —~0-08% | —0-401 —0-009
6 —0-1009 0-3319 0-1471 | —0-2381 —0-1649
6 —0-22649 0-12559 020831 | —0-05821 | —0-17689
7 —0-198689 | —0-027801 0-153391 0-052019 | —0-112129
Sam of squares of 4] 0 1 4:81 14-746
top 7— 1 terms in ] y ‘\
column (5} | \' N
1
. - 1 L'
(6) {7) ' (8) (B 4
Values of k& AE, | A5E, ATE, Asgf &N
0 0 | o 0 ol €
1 -1 1 — O\
2 39 _ | —490 5-9 O\ 60
3 —521 911 P — 1401 4 Moot
4 2:319 — 7520 16639 /»[V- 30649
8 0-1559 2:1631- | — 9692K &  26-3311
6 9-011¢9 014391 201818 | — 1171129
7 — 064761 0-076751 0067159 1-952031
Sum of aguares of K 48-732 169-367 ~B96-960 2218:671 !
top 7 —1 terms in Ny
column {7) O
TaBrE 5-2. Calculation dftheoretical reduced variances
of differences of seriegsii,,\compa,red with observed values
M @ RE) | @ ®
| i Swm of -
™ colurnns (2)
 D{ARg F8hm of squares and (1) Column {4} | Observed
k from (5:12) |79 wof columns in divided by | divided by | wvalues for
VAL Table 51 | (2;,) 2-8846 series 1
A LA i ‘
0 2-3838°% ¢ 0 . 28846 1 1
1 AB988 0 | 076904 0-2667 0-2383
2 \Ldsdo 1 i 03590 0-1245 0-1100
3 N\ o403 461 | 02508 00869 0-0756
4 00754 | 14-746 0-2117 0-0734 00627
5 0-038 ! 48-752 01935 0-0671 0-0562
6 0-02% 169-367 0-1833 0-0635 0-0523
7 -0:011 606-960 :  (-1769 00612 0-0497
8 0-002 2218671 0-1724 0-0598 0-0478
9 1 0001 $222-839 01691 0-0586 0-0465
W [ 0091 30786012 0-1666 0-0578 |  0-0454
IT — 116158-9 P 01647 00571 | 0-0448
12 - 4408717 0-1631 0-0565 . 0-0439
13 — " 16823734 01618 06561 | 0-0433
14 — 64448624 0-1607 0-0557 | 0-0429
16 — 24774244 0-1697 0-0554 | (0425
16 — 95512813 0-1589 00551 1 9-0421
1% — 365166246 01582 0-0548 & 0-0416
8 — : 14300613030 01576 005486 | 00412
19 — P 5550088284 0-1570 00544 | 00407
20 — | 21877727939 0-1565 0-0543 1 0-0403

42
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_In Table 52 are shown the sums of squares of terms like (5-21), the
contribution Z(4*;)? for & = 0 to 10, and the ratio giving the reduced

variance var var (4%u] Ry
2k

()
as a fraction of the variance of the series. The observed values are shown in
the last column.
5-3. We note in the first place that for % greater than 5 or 6 tho sum
X4 k£,)? contributes practically nothing to the result. The othergerms Erow
so rapidly as to swamp his element. For that reason we have net bothered
to evaluate it for £ > 10. N,

5.4, Secondly, the observed and theoretlcal values ‘ru.n concurrently,
‘but the former are rather lower than the latter. To gome extent this is due
to the fact that our observed series has a rathet greater value than the
theoretical expectation, 2535-110 as against 2855-769. When allowance is
made for this factor the agreement is fair. Wemight well have expected to
find it a good deal worse, for the obsefved serial covariances are much
higher than the theoretical values (3;F)yand from the formulae expressing
the variate-difference functions in térms of serial covariances we might have:
expected. the former to be senously affected. That they are not influenced
more than observation shovgs iz, 1 think, attributable to the fact that in
equation (2-18) the highers sgrder serial covariances are of less weight than
the lower-order quantities. - : : -

5-5. An interesting feature of Table 5:2.is the peculiar slow downward
creep in the coefficlents V after & = 5. It occurs in both the theoretical and
the observed ﬁgures The first two or three differences reduce the variance
substa;ntmlljx BHut after that successive differencing has an ever-decreasing
effect, BQfOre proceeding to digcuss this phenomenon I give some further
expenfnental results.

&6, Table 5-3 shows, for series 2, 3 and 4, the values of 1, up to & = 20.
{Thé values for series 2 and 3 are of the same type ag those for series 1 and
- require no separate discussion. In series 4 we have a characteristic variate-

difference effect for ¥, to ¥;, the very shors oscillations in this series (and the
negative value of p,) resulting in greater values for ¥’s of higher order than
for ¥;. Once fhis is exhausted the values of 7 creep steadily downwards in
the characteristic way.

5-7. Compare the effects for the theoretical series with those of Table 5-4,
which I guote from Tintner’s book[16] on the variate-difference method,
Again we find the characteristic creep of later V’s after a sudden fall for the
‘first two or three, in annual wool prices, monthly wool prices, annual raw-
silk prices, and annual wheat-flour prices—all the series that Tintner

V= —57—
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examines. These series, incidentally, contain only 48 terms, except the
monthly wool price figures which are presumably 12 times as numerous.

Tasrs 53. Reduced variances of differences ¥, for the
experimental series 1, 2, 3 and 4

Vi
k .
SBeries 1 Beries 2 Beries 3 Serien 4
0 - 2535-11 3414-42 3900-04 . 2601-20
1 404-10 523-87 1472:92- 337747 ~
2 278-79 28946 528-63 395874 N\
3 191:57 : 183-93 25633 424173
4 158-83 - 163:17 172-17 4377-38y,
5 142-40 152-49 142-17 4425.47.
G 13256 : 146-06 128-52 4413-85
7 125-91 : 141-56 121-12 . 4360-24
8 121-23 13938 116-55 R LET
] 11775 137-74 113-43 A 4184-23
10 115-14 136-59 11117 LY 408608
11 - 112-02 135-68 10945, XU 399254
12 111-31 13490 108-00 3007-91
13 109-89 134-22 106,92 ) 383262
14 108:72 133-64 105 376474
15 107-67 13319 D481 3701-48
18 106-85 132-91 “N102-85 3640-63
17 105-57 132:81 W10300 - 358118
18 10443 132-86 N+ 102-33 8523-33
19 103-26 13308 O 101-83 ! 346707
20 102414 13323 29 10151 -+ 3415-88

TARLE 5-4. Reduced variances of differences ¥, for four series of annual
woaol prices, monthly qulprices, annual Taw-silk prices and annual
vheat-flour prices (fram Tintner(16]). The period covered is 1890~

1937 in each case \ .
AN/ Vi )
k . Ay.n’zﬁl Idonthly Annual raw- Annunal whest-
VQ’O}\:;ﬁcea wool prices silk prices flour prices

0 K b1069 01121 2.8914 4-7969

1 ALS 0-02769 (-002064 03849 07020

2 ) 0-02590 0001237 0-2714 0-4402

s\ 002624 0-001096 0-2317 03931

4\ 0-(128358.. 0-001029 0-20:33 3767

B 0:02626 0-G00o7Y - 0-1824 0-3662

G 0-02600 9:000945 0-1662 0-3548

T a-02577 0-0006922 0-15633 03501

8 0-02553 : 0-00¢905 01422 {3426

] 002519 0-000822 0-1324 03334 i
| 10 ; G-02487 (000834 : 01240 0-3243. ;

5-8. Let us return to the experimental series, the only ones of whose
generating function we are certain. In Table 5-2 the theoretical reduced
variances for successive differences seem to be tending to a limit in the
nejghbourhood of 54 %, of the variance of the primary series, and the
observed variance to about 4 9%. Whether this limit has any reality or not,
it certainly appears to have for the finite geries under examination.,
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In applying the variate-difference method to geries 1 in the standard
way we should be led to the conclusion that it can be represented as a
systematic effect expressible locally as a polynomial together with a super-
posed random element whose variance is about 5 %, of the whole. Such a

" scheme of representation, whatever its value for smoothing purposes, is
obviously very wide of the truth. In short, the variate-difference method
does not give us a clue to the true nature of the series. It provides for the

. autoregressive scheme an alternative and approximate form of mathematical .

_rgpresentation, but seems to draw no distinction between autore%ression
and a functional scheme with superposed random variations.

5:9. Nor does it appear that the slow decline in reduded variances
which we have found in the analysis of antoregressive series Is necessarily
characteristic of such series. It is well known that sucoessive differences
tend to become highly correlated and that the corgeiation of ¥, and ¥,
tends to unity for high . We might therefore expsch that a series of values
of I, would be smooth. Experimental evidence IQ confirmation was provided
by Andersen[13, who analysed 820 terms of a tandom series subdivided. into
- series of 32 sets of 10, 16 sets of 20, 8 setg6F40, 4 sets of 80, two sets of 160
and as a whole. His results show a smooth-Gourse of values of successive Vs,
but they do not all decline. Some inprééfse, gome oscillate and some decrease.

5:10. The mere regularity inithe course of an observed series of Vs
therefore proves very little, and'it certainly does not provide presumptive
evidence one way or the other in respect of the autoregressive character of
the series. Itmaybeth t'\ﬁhé downward movement of the V’sis more typical.
One would, for instance; not expect it on every occasion if the residuals
were random. If the tourse of the ¥’s were not downwards we might, in
the present staftq of knowledge, doubt the existence of autoregression or at
least require~to’ examine the system further before accepting an auto-
regressivesgfﬁothesis. But if the course is downward all we can say is that
the hypathesis is not weakened. Asin other cases {e.g. that of mean-intervals
hqi}wge}l peaks discussed in the next chapter) our difficulty is that several
different hypotheses may give the same results and it is diffieult to arrive
at a crucial experiment with the variate-difference method.

Summary

5-11. (1) Vacri&te-djﬁ'erencing of a linear autoregressive series may
yield a set of variances which appear to tend to a limit. This must not be held
to suggest that the primary series is necessarily generated by a polynomial
element plus a superposed random clement. :

{2) The successive variances decrease slowly bus systematically in a way

" which may be characteristic of the autoregressive scheme but has not yet

en shown to be so.
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CHAPTER 6

RUNS AND SEQUENCES IN
AUTOREGRESSIVE SERIES

Mean-distance between peaks

6-1. We may consider the generating equation of a simple linear auto-
regressive series Uy gt Aty + DU = €13e (6:1)
as a difference equation. Its solution, apart from a complementary functio{l
which damps out of existence very rapidly and may be neglected, isias

noted in 5-1, @ oA\
U= 'En g}'et—ﬂv O 16-2)
i= L
where g = 2 isin 6, i (6°3)
O ET @t &
and henee £, = 0, £ = 1. Somewhat similar formulap apply to the more
extended linear scheme 7 \d '
Urm +a’1ut+m—_1+ +amu§ 5'::>s+m= (6'4)

in the sense that the solution w, is a sum of tgrins of type (6-2), the £’s being
moregeneral damped harmonic terms deppn&ing onthe constants of theseries.

6-2. It follows that if ¢ 1s a randq’m ‘hormal variable then w, itself is
normally distributed. In the theotetical part of this chapter I shall assume
this to be so. The experimental sefies are based on a rectangular distribution,
but it appears that the theo: eficefl results for normal variation are followed
~ very closely by those for fectangular variation. Part, if not the whole, of
the explanation of thig oticordance is due to the fact that the average of
a number of random wariables tends $o normality under certain general
conditions. ThoseConiditions are, in fact, not strictly fylfilled in our present
case, but: doqusiéss the effect is somewhat similar.

6-3. iy 18 a peak of the series
Let us t'}k}e new variables Uy S > . (69

Ay = Uy— g, Ag = Uy— U (6-6)
Then A, and A, are normally distributed with variance
vard = 2(1—p,) varu,

p, being the first augocorrelation of the series. The correlation between A,
and 1, is easily seen to be 7, say, where

—14-2p—py

Ty = —ar

2(1—py)

v__Agpo _ : _'
2(1—py) : D

-
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Now the probability that a pair of normal variables with correlation r, obey
the relation A, = 0, A; < 0 is the volume of the bivariate normal surface lying
in the quadrant A; > 0, A, < 0. This, by a theorem due to W. F. Sheppard, is
- -21— 60871 7,..(A proof of this result which is capable of generalization is given
below.)
Tt follows that the mean-distance between peaks in a normal series whoge
- first two autocorrelations are p; and p, is

2 .
m.d. (peaks) = 3_17_1 | ~ (6:8)
whiere 7, ia given by (6-7). This is true whether the series is auﬁ@g‘egresswe
or not., £\

As a check we note that if p; = p, = 0,7, = 23 , and @hé‘én.d. (peaks) is 3,
the known result for a random series. : ' ’
64 For the autoregressive scheme BN\
Upyo+ @ty 3+ by = ‘%&} 4
we have, multiplying by u,Ak and summmg, \

~Z' €yt
Phsst Py + b= sstis) (69)
- Now from (6-2) it is seen that #, ;. dOes not contain e, ,if kis not less than — 1.
_ The sum on the right of (6 9) thits vanishes and we have _
sz+apk+1+bpk— 0 (k=-1) - (610)
.In particular, for k = —\{}0‘ we have )
. fQl+~:z+b,o1 =0, ptap,+b=0,

MK a

whenee— \J = }
| I S S (1)
A\ a2—b{1+b
N pe= —h(ua—)- (6-12)
Hencé, ¥rom (6-7), we find b2~ (1 +a)? ,
N T 1t a+th)’ (613)

and the m.d. (peaks) may be found from (6-8).

For the four experimental series we have considered above the theoretlca,l
and obsgerved values were as follows:

] m.d. (peaks) m.d. {peaks)
Series from (6-8) observed

1. 4.96 505

2 4-94 5-57

3 569 5:52

4 2-60 2-69

The agreement is good except perhaps for series 2, which we have already
iced as diverging more from expectation than the others.
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6-5. It is rather remarkable that the m.d. (peaks) as given by (6-8) and
(6-18) for the simple lincar autoregressive series is extraordinarily insensitive
to variations in a and 5, Some typical values are:

a=-12 b=04 - md (peaks)= 496

=—15 h=08 . = 5-69
@ =-10 b =086 " = 4-96
@ =—08 b=08. ' . = 518

Tt appears, in fact that, for a wide range of values of p; and p, we shll find
a m.d. (peaks) of between ¢ and 6 units. The appearance of such a¢period’
therefore throws very little light on the nature of the series, excéptperhaps
that it may be held to confirm the existence of random disturhances.

6-6. Although I donot want tolay myself open to the c;hfai‘ge of indulging
in the sort of numerology which I am always criticizing it others, I think it
majy be of interes$ to observe that a table quoted by Davis ([6], p. 548) gives
the distribution of 166 ‘cycles’ in 17 countries, firesumably calculated by
. distances between peaks or troughs, the e %alue of whieh is 52 yearxs.

In my mind, this does not by any means'mgply that there is any kind of
rhythmic influence at work generating Business oseillations with a mean
period of about 5 years. It would be gilite consistent with the observations
to suppose that the economic strucbﬁi‘é in the various countries was capable
of representation by autoregrasswe models with perhaps quite different
constants in the different countrles
- 6-7. Sir William Bevgn\ﬂge [4] has recently published some interesting
series of British industrial-activity going back to 1785, He deduces from his
main series” a perlod of #bout 8 years by counting the ocourrence of what he
regards as the prmclpa,l peaks; but to reach this result he has to ignore a
‘number of muhr ones, Had he included them all he would have found 2
‘period’ of 4years, precisely as the foregoing comments lead us to expect.
68_. JNBW is it legitimate to exercizse an individual judgment in the
rejectlon ‘of minor peaks in this way? Table 6-1 shows the distribuition of
values of the 30 peaks of the series. Sir William has rejected exactly half
the peaks (and hence doubled the mean-distance between peaks). The line
of division is far from clear for Sir William has accepted one peak in the
range 100, but rejected seven with greater values. The maximum number of
acceptances, in the range 104-108 is also the region of maximum rejections.
The general run of values in the final column shows how diffieult it is to
decide, subjectively or objectively, on acceptance by relation to the peak
- values alone.

* Sir William's index for all industries runs-from 1785 to 1938, T have worked on the
series from 1785 to 1513 as there is & gap of § yoors, 1914—19 for which no figures are
available.
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6-9. ‘The difficulty obviously becomes intensified if we allow ourselves
to be influenced by other factors such as the existence of neighbouring peaks
in the series. There will be a tendency to regard two peaks which are close
together as corresponding to a single oscillatory maximum and hence to
reject one of them. There is no justification for such a course, so far as L can
see; and if it is pursued to any extent there will resulé too few short intervals
and an excessively long m.d. (peaks), which is just the kind of thing we do
observe in many inguiries.

TaBLE 6:1. Numbers of peaks with given values in the Beveridge series
of industrial activity in Britain, 1785-1913. (Data from reference(4l,

pp. 310-313.) : O

No. of peaks o ™ )

| }Ta-lw'as counted by Sir Other peaks (."I’F otal peaks
ol series Willism Beveridge e \ IR
”e o . .
96-- /
98—
160-
162- ¢
104 ;
106-
108—
110~
112—
114

/

7

¢

7

n—-f|"-t\:¢t~:un—"l:uwf n—'! | |
£
ml oo | westom

132 \

! Totals ‘ ‘,\
. \\ N

Mean-distance betieer wperosses

—
=]
—
=
L
=1

- 6-10. By g;si}‘aﬂar line of reasoning to that used above in paragraph
6-3 it will be\&e\eﬁ that the mean-distance between upcrosses in any normal
series is given by

) R\ 2m

- 6-14
costp,’ (6-14)

N m.d. {uperosses) =
RS )

vh)e}re p1, the first autocorrelation, is given for the autoregressive case by
(6-11). In general we expect thatm.d. (upcrosses) is greater than m.d. (peaks)
because of luctuations which may take place below or above the zero axis,
providing peaks but adding nothing to the upcrosses. For our four experi-
mental series wo have: R

m.d, (uperogses) m.d. (upcrosses) m.d. (peaks)
Serios from (8-14) ohserved observed
1 8-40 8-30 5-08
2 11-81 12-39 557
3 6-87 6-38 5-52
4 - 2793 . 276 2-69

The agreement appears to be satisfactory.
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6:11. In the Beveridge seriea of Table 1-6 the m.d. (peaks) is 4-67 years
. and the m.d. {upcrosses) 7-08 years. This is consistent with a scheme of
autoregression.

6-12. T do not propose on this oeccasion to discuss which is the * best’
meagure of oscillatory mean-period in an antoregressive scheme, but it is
worth while pointing out from the observed differences between the
m.d. (upcrosses) and m.d. (peaks), together with the differences of both from
the autoregressive period, how necessary it is to be exact in defining one’s
usage. It may also be added that if an observed series has a trend pregent
and that trend is removed by fitting polynomials, it is quite possible that
part of the oscillatory effect will be incorporated into the trend effégt, which
will shorten the m.d. {upcrosses) but may not affect the m.d (pea.ke) 80
greatly. I shall discuss the question of trend elimination on a,"future ocoasion;
but I mention the point now as it provides a possible explenatlon of the
failure on the part of most writers to stress the differénce between the two
measures, : K7,

, ~,\‘

NS

Distribution of runs and intervals

6-13. The mean-distances are only centrel values of distributions, and,
as has been seen, are insensitive to changes in the nature of the generating
process. Itis, however, possible thata hore sensitive discriminator between
different types of series, or serieg‘ofthe same type with different constants, -
could be found in'the dtstmfmt@vn of intervals. The method has not been
used hitherto because the d}}stnbutmns were not known except in the case
whon the series is randomiy{For an account of what is known of the random
case, with a list of reférénces, see Wallis and Moore(171.) I have obtained
expressions which, p\rowde a thathematical solution of the distribution
problem, end'g&e them below; but unless they can be simplified arithmetical

~ application waeuld be rather tedious.

6-14,. C'enmder in the first place ‘upruns’ in the series, that is to say,
sequences in which each va,lue is not less than the preceding value. We note

that if A = uyq— 1y = A (6 la)
~ the sequence #, ... 4y, 4 is an uprun 1f all the A’s are not negetlve Further,
all the A’s have variance 2{1.—p,)var« and their serial correlations are
given by o= =Pt 205 P
! o 2(1—-py)
_ A2
A1, (6+16)
T2(l-py)

The probability that a given sequence of k-1 terms is an uprun is
therefore equivalent to the relative frequency in the joint distribution of
A; ... A in the non-negative part of the domain. Our problem then reduces
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to that of finding the content of a k-dimeunsional normal hypersurface
. contained in the positive hyperquadrant A, >0, .., A, > 0. _ _
I have given the solution of an analogous problem in a previous note[71
in the form of an expansion in ascending powers of the correlations. The
expansion is, in fact, a generalization of the tetrachoric series.
For instance, if £ = 2 we have the tetrachoric series ([13], p. 356)

[[far-3% {I#q(h) ) B o ) 3, (617)
where © el =g 2 esB (— 8, . (618)
L w@BE = (~faw, O @)

and by convention the first term is A\
37 |, oxp (~ a2 o [ exp(- f%dy (620)

In cur case the imits A and % are zero and s{(xpe

H(0)=0, rodd \

1 ' 621
S 1213(72‘?) ," reven = 24 ( )

the probab]]lty required, say P reduces to

H(0) =

1.. s ant 1R
Po=fp— L .
-5 A e 2
! 1 gin-t ‘
Re = 1Ty snn
PN 1 1 _ _
,\‘“ = E—%cos—l T (6-23)

Th1s chec%mth the result of Sheppard a,lready used above.
For fs '3 we have

\@;IO J.l] f&]-dF
(

ek
= 2[R (O B a0 a0 | 620

Since of j+1—1 and the two similar terms one at least must be odd, the
only surviving terms are those for which two of §, k, I are zero and the other

one is odd. We then find .

1 1
P, = sTin (28111_171+8111 L7,)

1 1 '
= 1—4—ﬂ(2 cos17, +dos Ty, — 7). (6-25)
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6-15, Pausing for a moment, we may observe that {6-23) and (6-25)
may be obtained by geometrical considerations, In fact, F, is § less the
proportional volume between two hyperplanes of angle cos™17,; F; is  less
the area of a spherical triangle cut off on the unit sphere in three dimensions
by planes whose angles are cos—'7y, cos17,, cog=dr.. At one time I had
hopes of generalizing this approach by finding the content of a region cut
off on the hypersphere in % dimensions by % hyperplanes with given angles
of intersection, but the direct geometrical approach baffled me; and from
the complexity of the results for & > 3 I have now some doubts whether any
simple solution exists. It may very well be, however, that recurfence
relations exist for expressing the values for & in terms of those for E 1 and
lower orders. O

616, For general t and a multivariate normal form Wrth correlatlons
between the jth and kth variate of y;; the propormona;l volume in the
positive guadrant is }

Eﬁgﬁj}fhauif &%J.'EXP(—%ﬁ—éhxﬂ.HJEQ%EP(—%ﬁ—dﬁxg
%(

—') X1zt +X13t1t3+ “!:Xgiatjtk'F }j“dtr-'dtk’ (6-26)

the expressions in the second lot of mtegra,ls being expressible in terms of
the Tchebycheff-Hermite polynomw:ls For instance, with b = 4, writing
Ty = Xj5+1, @60, we have )

im\

r{rkrirprgel ., ¢
P E[J:Lﬁpsﬁ:]nzf 11 j1%—1(0)H+m+n—1(O)Hk—Pm+p—1(0)HEJ—nﬂa 1( )“4(0)]:
(627
E iy 4“&(3(3+k+3—1)1(3+m+n !
I & N {k+m+p—1)1{I+n+p-~1)!
- AN - 3
4 ]k"zhninlpfzjﬂﬁ—m %+p_2(‘g+k-2l-l——_)1(j+?’?}-!2-ﬂ —1)
“ﬁy’ - (ktmap-1), (Lntp-1Y,
\/ - - g ) 3 !

: (6-28)
' sub]ect only to the condition that the fractlons in the denominator must be
integral.
6:17. These expressions are hardly as difficult as they look. For &
damped autoregressive series the expressions for the P’s converge fairly
© quickly and are, I think, ameénable to caleulation. At any rate, I have not
been able to simplify them to any considerable extent. Tables of tetrachoric
. functions can, of course, be used in the svaluation of the separate terms.
6-18. TFrom the values of P, we can easily derive the distribution of
upruns. In fact if the relative frequency of a complete uprun of exactly I
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intervals is Ji» the relative frequency of upruns of 1 is

=B, (6-29)
that of upruns of 2 is > {(G—1f3} =B, (6-30)
=2

and so on. Thus .
Bia— 2R3+ B = % {({—k-1)f)}+ ZHU-k+1f} -2 3 {(i-R)f}
. f=kt2 s ik Fekt1

=fi -

or Jo = A%B,. : N {6-31)

6-19. For the purpose of comparing theory with experimeht in a given
series it would probably be simpler to work with uprans\ant downruns
rather than with intervals between peaks, but the djgti:;fiution for peaks
may, if so desired, be derived from that of runs. In fagh, thé probability that
aninterval of extent k is an interval between peaks i&tthe sam of the separgte
probabilities (1) that the first two terms are a eomiplete downrun and the
next a complete uprun, (2) that the first threeare a complete downrun and
the next k—2 a complete uprun, and 80 Qn The required distribution is
then obtainable by summing appropriate terms of the distribution of runs.

Distribution of intervals befween ¢ro88es

6-:20. The same methods will yield the distributions of iritervals from
upeross to downeross and from'upeross to upcross. The probability that
a series of £+ 2 terms is anfinterval from upeross 0 downeross is the prob-
ability that «; <0, « &D;t..., U512 0, #,5<0, and may be evaluated
from the content of\the appropriate quadrant of the multidimensional
distribution of th€’s themselves; and the probability that an interval is
one from upcrogs.fo upcross follows as in the Pprevious paragraph.

Summary.\::"‘ _ _

6-21.‘}.:(1) Expressions are given for m.d. {upcrosses) and m.d.(peaks)
in a géwies for which the terms are normally distributed. These agree well
with the experimental series, notwithstanding that the latter are based on
rectangular variation.

(2) In linear autoregressive series the m.d. (peaks) is very insensitive to
changes in the constants of the series and therefore provides a poor dis-
criminator between different series.

(3) Itis bad statistical practice to exercise any personal judgment in the
selection of peaks as of greater importance than others, T _

(4) Expressions are given for the determi_nation of distributions of runs
and intervals in non-random normal series. It may be that such distributions
would provide better discriminators than the mean-distances themselves,
but further work on this point is necessary.
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CHAPTER 7
SUMMARY AND CONCLUSIONS

7-1. In this chapter I lay aside the statistical and mathematical tools
which are necessary for a ecomplete discussion of the behaviour of time-
series and atterapt to explain the main features of the foregoing work in
plain ¥nglish. This will involve some sacrifice of accuracy in exprestH
but it has been suggested to me that economists who are interested in time-
series without being statisticians would wish tc¢ have a summal’y.bf the
* basic ideas in language with which they are more familiar. O

7'2. The type of time-series encountered in economicy woik usually
possesses oscillatory features which are undoubtedly not \dqe to chance, by
which I mean the fluctnations cannot be regarded aglhappening entirely
haphazardly. If we draw values at random out of a‘\bat in some temporal
order, the series so obtained will fluctuate; but eaéhyvalue will bear no rela-
tion to the next. This is not what we observe, ot In general successive values
are dependent to a greater or less extent. Inahort there does exist some-
thing to be explained as a systematic element of the series.

7-3. The existence of this systemgxtlo effect can often be seen at a glance
from & graph of the series, but if ngcésééry exact tests of randomness ¢an be
applied. Assuming the effect to have been demonstrated, our primary statis-
tical problem is to examine ii@ nature and if possible to formulate the laws
of its behaviour. The explanation of those laws in terms of economics is
more a maitter for the eduriomiss than the statistician, though the latter is
by no means uninte sted. The first stage of his work, however, is to find
. out precisely w. atristo be explained.

7-4. The classical method of approach to the problem of formulating
the laws of Oseﬂlatory series was based on harmonic analysis. The typical
oscillator W&s regarded as the kind of wave which is constantly encountered
in the physlc_al soiences and is expressible as a sine or cosine of the time
variable. Any ordinary oscillatory movement can be represented as a sum
of harmonic elements of this kind, and the object of the analysis was to
isolate the constituent elements whose sum composed the series,

7-5. This method has never been found very successful in economic work
{or, I may add, in metcorology and geophysies). In fact, it depends funda-
mentally on one assumption which was noticed in 1-22, and which is neither
plausible in theory nor consonant with cbservation. It had to be recognized
from the outset that one could not expect to fit & sum of harmonics to an
. observed series exactly unless one was to take a fantastic number of them.
There thus appeared discrepancies between the mathematical model and
the observed series, and these discrepancies were regarded as comparable to
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. errors of observation. That is, they were supposed to have an instantaneous
- existence, to occur by some sort of random process and then to disappear
without exerting any effect on the fui;ure motion of the system.
© 7-6. Now it seems quite clear that if o disturbance does ocour in an
~ economic system its effeets do endure to some extent. Sometimes at least
they endure for & long time. Disturbances may or may not be random in
the sense that they ocour according to the laws of chance; but once they have
occurred they become just as integral a part of the history of the system ag
any other constituent element,

7-7. A possible model of a series beha,vmg in this way (thoughwnot the
only one and perhaps not even the best one) is provided by the aui;oregress;v

-+ series proposed by Udny Yule. This allows for the mcorpomt]()tt Of a stream

of disturbances into the system, and there is a considersble volume of
evidence to show that it does provide at least an approxitnation to observed
phenomena in economigcs, meteorology and geophysids” The object of the
work described in ‘the foregoing pages was to diseover what sort, of results
were obtained by applying current techniques foi’the analysis of time series
to the autoregressive series. In order that thre should be no doubt about
the nature of the series under investigation a number-of artificial auto-
regressive series of considerable length weére constructed for the experiment.
7-8. The principal result (Chapﬁer 4) was that periodogram analysis .
- (the cl&smcal method of detectmg harmonics) broke down completely on the
autoregressive series considered.' Not only did it fail to indicate the true
character of the oscﬂla.tmnabnt itgaveanumberof ‘significant’ periods which
were quite spurious. M: Qoncluswn is that if there is any reason to suppose
thab the series underexamination is autoregressive periodogram analysis
is dangerously miglédding and is not worth the arithmetical work involved.
7-9. Secondipy/it has been shown (Chapter 6) that the method of
counting mgr’wals between peaks or upcrosses in the series may also be
misleading, Apart from the tendency on the part of some investigators to
ed1t t,h.e ‘weries and reject certain effects on their own judg¢ment as un-
1mptjzdsant it appears that for many types of simple autoregressive series
encodntered in practice the mean-distances between peaks (and to a smaller
extent between upcrosses) is much the same whatever the constants of the
series may be. In short, we are always Hable o find these ‘periods’, and
their existence throws very little light on the true nature of the generating
scheme. I do not mean,.of course, that such effects are on that account
unimportant and unworthy of study. But I would infer that comparisons
of different series among themselves, arguments purporting to explain why
some have longer periods than others, attempts to bolster up an economic
hypothesis merely on the existence of such effects, have very little validity,
simply because the effects are quite consistent with so many hypotheses.
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7-10. Thirdly, it has been shown (Chapter 5) that the variate-difference
method is also unreliable in providing an estimate of random variation in
an antoregressive series. The method was not, of course, intended for that
purpose; but the significance of the result is that for such series it gives an
answer which appears to be meaningful but in fact may not be so. Like
periodogram analysis, it provides a mathematical representation of the
data which may be quite foreign to the nature of the generating process.

7-11. Allthis, 1 fear, is rather destructive. If the conclusions ars correcs,
much of the work which has been done on the analysis of oscillatory geries
will have to be reconsidered. Nevertheless, it is essential to gét)at the
truth in these matters, and if only we can recognize the failur€ f hitherto
aceredited techniques something will have been done to clear the way for
hetter methods. ¢

7:12. The fourth principal conclusion (Chapter.3)'i8" that the correlo-
gram, if carefully interpreted, will give a reliable guide fo the nature of
the series; but that for finite series it fails to damp out according to the
expeetation for a series of infinite length. Thigys in accordance with what
1 belisve to be generally true of time-series; Shat large differences between
observation and expectabion are more thg'rule than the exception in series
of the length which arises in practice; \\

7-13. A disadvantage of the ¢orrelogram appears to be its insensitivity
to more complicated schemes of ‘@htoregression. Departures from expecta-
tion, so to speak, submerg{%he Ainer variations which we should expect, for
an infinite series, to pegmit of the dissection of different autoregressive
elements in the primary series. From this viewpoint tho correlogram pro-
vides a kind of lowér fimit to the oscillatory effects, but may not exhibit
with sufficient clatity the different elements which compose them.

7-14. Hownlar these conclusions will be accopted by statisticians and
economists Beannot foresee; but T hope that on one point at least there will
be no dmg.eﬁt, the necessity for a great deal of further research. Although the
work degcribed herein has taken up more of my time than I care to think

- about T hawve done no mare than seratch the surface of this, perhaps the most
difficult and certainly one of the most important of statistical problems.
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APPENDIX

Tables for periodogram and harmonic analysis

In carrying out the analysis described in Chapter 4 I found that existing
tables were insufficient and had to construct my own. These have sub-
sequently been extended to cover trial periods up to and including 100 and
are given below. Notwithstanding the conclusion in the text that periodo-
gram analysis is misleading there may be occasions when it will be régired,

e.g. for experimental purposes; and in any case there are fields wilere har-
monic analysis is still necessary. I hope, therefore, that the tables may be
useful. ~

S h

2 5
The tables give values of slnjk;E and 0032;7” for i{tegral values of p

from 5 to 100 and integral values of % from 1 fe ‘l(: p—4) when p is &
mul$iple of 4, from 1 to }(p —2) when pisa mu],t@ale of 2 but not of 4, and
from 1 to 4(p—1) when p is odd. The tables- aré to four places, and both
decimal points and signs are omitted. The sugns are best dealt with under a
systematization of the calculations descnbed. below.

For periadogram analysis the sumS: U of the Buys-Ballot table of (1-1)
are first ascertained. The next stag@is ‘the calculation of the sams 4 and B
of equations (1:2} and (1-3); ax\ld it: is at $his point that the tables are re-

7 & A
quired. If pisa multiple q{{ the terms sin _;%’a repeat themselves four times

owing to the symmetry Jof the sine function, and, moreover, the cosine
terms are the same #s%he sine terms of complementary angles, so that it is
unnecessary to i’@bﬁf&te both sine and cosine. If p is a multiple of 2 but not
of 4, or is oddyseparate columns are required for sine and cosine. In the
former casg ;.:owmg to symmetry, only the values in the first quadrant need
be ta,b},ila’ﬁéd; in the latter case those in the first two quadrants are required.
A few\eiiéi-mples will illustrate the arithmetical process.

(@) p even. The following are the values of the U’s for series 2'and p = 16:
44,7, —124, —99, —14, —226, —256, —333, —337, —235, —18, —93,
—104, —34, —158, —179. These sums are based. on 224 terms. We write
them down in four columns a, 4, ¢, 4, as follows:

a b o d a+b—c—d @g-b—g4d
44 — - 337 — — 381
— 333 — 238 —174 B8 306
__124 — 956 — 18 —158 —204 -8
— 499 — 228 — 83 — 3 —198 185
— — 14 — — 104 a0 _

The method of writing down will be clear on examination. The first column
runs downwards; we then cross to the second column, start a line lower

Hez
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down and write upwards, stopping at the second row; cross again to the
third column and write downwards, and again to the fourth column writing
upwards,

We then form the two columns on the right. In the first row we have a
blank in the first column and e — ¢ in the second; in the last row b —d in the
first and blank in the second; and in intermediate rows a +b—c¢—4d in the
first and ¢~ b — o+ d in the second.

In conjunction with the values for p = 16 in Table 1, we then find 4’

#nd B (the sums ZU, a1 003% and XU, sin 2;‘7, i.e. the function 4 and

Q.
B except for the constant ) fmp) as .
5.\
A" = 3814 396(-9239) —8(-7071) 4 186(- 382:)\

= 812-390, s (“'}

— 88(-8827) — 204(-7071) — 198( 92.39)+90

= —203-503,
giving A4 B’ = 701,390°989.

N\
Hence, the value of 2/(mp) being 2/224 wéhave
. Q>
I= (2) (A'34B?) = 56-9145.
W&p ‘,::.’.

Tt is left to the reader to verify that this process gives the required inten-
sity. To reduce to the stafidardized infensity £ we divide by twice the
variance of series 2, n&{n\ély 6828-844, obtaining (16} = 0-0082 as shown
in Table 4-4.

(b) p even bui gof amultzple of 4. The following are the sums U for series 2
and p = 18: —25,)-84, —38, —157, — 61, —168, —19, —37, —125, 96,
— 189, — 316,469, —275, — 218, — 247, — 69, 72, the figures being based
on 216 textd, We now write the values in four columns as follows:

N b ¢ d atb—e—d a—b-c-—-d
Y 95 — — 96 — - 1
N/— st —~125 —189 72 — 92 302

- 38 it —316 — 69 310 226

—157 — 19 — 469 iy 540 84

Z el — 168 —375 —213 259 169 -

The difference from case () lies in the direct crossover at the foot of columns

a and ¢, .
From the values for p = 18 in Table 2 we find A" and B’ as

A" = T1+302(-9397) 4 246(-7660) -+ S4(-5000) + 169(-1736)
= 614-564,
B = —92( 3420)—{— 310(-6428) + 540(-8660) + 259(- 9848)
= 880-507.
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Hence
I=( ) (A2+ B2 = ( 2 ) (1,170,691-627)
= 100-3679,
and ) B = I/(2varu) = 0-0147,

+ (¢) podd. The following are the sums U for p = 17 in series 2, the number
of terms being 238: —409, — 395, — 432, — 403, — 387, — 266, 53, 269, 261,
240, 50, — 24, - 138, —194, —117, —25, —93. We write them down in

two columns: : Q

@ . b tw—h +{a+b) A

— 409 p— — - — 409 ™

— 395 — 93 — 302 : — 488N

— 432 — 25 — 407 —457

— 403 —117 — 286 520

— 387 —194 —193 A 581

- 266 —138 —128 w'\’\ 404
53 — 24 77 Ny — 20
269 50 . 219 7 =319
261 246 21 ) — 501

PN

 The third column gives the values of a—b. Ths‘fourth column gives ¢ +b in
the first five rows and — {@ +b) in the next fouf‘ For general odd p, we take
a+b in the first {:}p] + 1 rows and — (a‘—r %)'in the remainder where [Lp]is

the integral part of ;p A\
From Table 3 for p = 17 we then! fmd
A" = — 409 — 488(-9325) < B57(-7390) — 520(-4457) — 581(-0923)
+ 404(-2737) 4 — 290-6026) — 319(-8502) — 501(-9830)
— —~2157-771, \\

B = —302(-3612)> 407(-6787) — 286(-8052) — 103(-9957)
— 128(-9618) - 77(-7980) + 219(-5264) + 21(-1837)

= — 714991
Thus & - 1—( 2 ) (A7 + B'%
=\ 2varu \mp
~O° = 0-0543.

TarLe 1.. Harmonic analysis for » a multiple of 4
Values of p
s | 12 | 16 | 20 | 24 | 28 | 32 | 36 | 40 | 44 | 48 52‘

7071 | 5000 | 3827 | 3090 | 2588 | 2223 | 1951 | 1736 | 1664 | 1423 | 1305 | 1205
8660 | 7071 | 5878 : 5000 | 4339 | 3827 | 3420 | 3000 - 2817 @ 2588 ' 2303
9239 | 8090 | 7071 | 6233 | 8556 ; 3000 | 4540 | 4154 : 3827 | 3546
8660 [ 7818 © 7071 G428 | 5878 | 5406 | 5000 | 4647

S0
9749

D65 : 8815 | 7660 | 7071 | 6549 | 6088 | 5681 !
9239 | 8660 | 8090 | 7857 ! T07L | 6631
9308 | 9397 | 8010 | 8413 | 7934 | 7485 |
— ' 5R48 | 0511 | 9096 | 8660 | 8230

: 9877 | 9505 | 9239 | 8855 |
0893 | 9659 | 9350
— — | @914 | 9700
— — - £z-927'=|

— = l..“_,,
(SRR =R R R O
H
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S
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TaBLE 1 {continued)

Values of p
E| 56 | 60 | 64 | 68 | 72 | 76 - 80 | 84 | 88 : 82 | 96 | 100
1| F120 | 1045 1 0980 | 0923 | 0872 | 0826 | 0785 | G747 | 9713 : 0682 | 0654 | 0628
2] 2225 | 2079 | 1961 | 1837 | 1736 | 1646 | 1564 | 1400 | 1423 * 1362 | 1305 | 1253
313303 | 3090 ! 2003 | 2737 | 2588 | 2465 . 2334 | 2225 | 2124 | 2035 | 1961 | 1874
43 4339 | 4067 | 8827 | 3612 | 3420 | 3247 © 5090 | 2948 | 2817 | 2698 | 2588 | 2487
4 | 6320 | 5000 f 4714 | 4457 | 4226 | 4017 | 3827 | 3653 | 3495 | 3344 | 3214 | 3090 ¢
6 | 6235 | 5878 | 5356 | 3264 | 5000 | 4759 | 4540 | 4339 | 4154 | 3984 ; 3827 | 3681
7| 7071 | 6691 | 6344 | B026 | 5736 | 5469 | 5225 | 5000 | 4792 | 4601 4423 | 4258
8 | 7818 | 7431 | 7071 | 6737 | 6428 | 6142 | 5878 | 5633 | 5406 | 5196 : 5000 | 4818 .
9 | 8487 : 8090 | 7730 | 7390 | TOT1 | 6773 | 6494 | 6235 | 5903 | 5747 | 5556 | LH3E8 |
10 | 9010 | 8660 | §315 | 7980 | 7660 | 7357 | 7071 | 6802 | 8540 | 6311 | 6088 ' 5BTS
11 | 9439 | 0135 | 8819 | 8502 | 8162 | 7881 | 7604 : 7331 | 7071 | 6826 ["&£69H3 , 637¢
12 | 9740 | 0511 | 9239 | 8052 | 8660 | 8372 | 8080 | 7818 ! 75567 © 7308, THT1 | G845
13 1 0937 | 9781 | 9560 | 93256 | DOG3 | 87Y5 | 852G | 8262 | 8005 | TTBY NG18 | 7200
14| — | 0945 | 0208 | 9618 | 0397 | 9158 | 8010 | 8660 | 8413 | BRIO [47934 | 7705
15| — | — | 9952 0830 | 9650 ' 0458 | 9230 | 9010 | 8777 | Rp44 | 8315 | 8000
8 — | — — 9957 | 0848 ; 0604 | 9511 | 9308 | 9096.} 8879 : 8660 | 8443 |
17| — © — | — 1 — ;0062 | 9564 | 0724 | 6538 | 9360 [39172 | 8909 : 8763
8 — 1 — — | -- | o966 | 9877 | 5748 ;9595 | 0423 | 9239 ¢ 9048
197 — | — | — @ — | — ! — | 9963 | 9888~ 9T | 9620 | 0469 | 0208
q20| — | — | — - - —  — | 9992,/ 9898 | 9701 | D659 | 9511
21| — — — — — — S| 9975 | 9907 | 9808 | 9686
22| — | — | — - — AN | — | 9977 | 0814 | 9523
23| — | — | = — | —— i fd— | — | — 9979|9021
24| —  — = | == = oy — — | 9980
TapiLE 2. Harmonic analysig\for p even but not a multiple of 4
SV alues of p
I 6 1w AN 14 18 29 26 ,
k - &\ - _ [
sine |cosine} sine cgsi,pb sine |cosine{ sine |cosine| sine | cosine| sine |cosiﬂe§
T AW R U _i
1 | 866G | 5000 | 5878 §090 4330 | 9010 | 3420 | 0337 | 2817 | 9595 | 2393 | 9709 !
2 - — | 98310 3080 | 7818 | 6235 | 6428 | TBG0 | 5406 | 8413 | 4647 | 8855 |
3 _— — N — 1 9740 | 2225 | 8660 | BOOD | 7557 | 6549 | 6631 | 7485 |
al — | — 4>~ " — | — | — [9s4s | 1736 | 9096 | 4154 | 8230 1 5681
5| — | I — . — | — % — | — | — lo9ses: 14239330 ! 3546
6 — — — — | — —_ . — — . — | 9927 * 1205
: ML\, I i :
')
N3 Valuez of p
N 80 34 38 42 46 50 :
% o ‘
: aine |cosl'ne gine |cosine| sine |cosine| sine !cosine{ sine |cosine| sine |cosine
: |
: 1| 2079 | 9781 [ 1837 | 9830 | 1646 | @864 | 1460 | 9888 | 1362 | 9907 | 1253 @ 9921
2 4067 | 9135 | 3612 | 9325 | 3247 | 9458 { 2948 | 9556 | 2608 | 0629 | 2487 | 0686
3 | 5878 | 8090 | 5264 | 8502 | 4759 | 8705 | 4339 | 9010 | 3084 | 9172 | 3681 , 9208
4 | 7431 | 6691 | 6737 { 7300 | 6142 [ T8HY | 5633 | 8262 | 5106 | Bo44 | 4818 | 8763
5 | 8660 | 5000 | 7980 | 6026 | 7357 | 6773 | 6802 | T331 | 6311 | 7757 | GRYR | 8000
6 ! 9511 | 3000 | 8052 | 4457 | 8372 | 54690 | 7818 | 6235 | 7208 | 6826 | 6845 | V200
71 0045 | 1045 § HB18 | 2737 | D168 | 4017 | 8660 | 5000 | 8170 | 5767 | 7705 | 6374
8 —= — 5957 | 0923 | 9604 | 2435 | 9300 | 3643 | 8879 1 4801 | 8443 | 5358
i 9 — — — — 0066 | 0826 | 9740 | 2225 | 9423 | 3349 | 9048 | 4258
S10 | — — — — —_ — | 9972 | 0747 | 9781 2035 | 9511 | 3090
11 — — b e — — - — 9977 . 0682 | 9823 | 1874
12 — — — — — — — — i — | 9980 | 0G28
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TaBLE 2 (continued)

71

Values of p
. 54 58 62 66 70 4.
gine |cosine| sine |cosine| sine |cosina| sine  cosine| sine |cosine| sine |cosine
1. 1161 1 9932 [ 1081 | 9941 | 1012 | 9949 | 0051 : 9955 { 0896 | D960 [ 0843 | 0564
91 2306 | 9730 | 2150 | 9766 | 2013 | 9795 | 1803 « 0819 | 1786 | 0839 | 1600 | 0858
3 | 3420 | 0397 | 5193 | 0477 | 2004 | 0541 | 2817 : 9595 | 2860 | 9640 2520 | 9677
4 | 4488 | 5936 | 4199 | 9076 | 3944 | 9100 | 3717 / 9284 | 3514 | 9362 | 3331 9429
5 | 5405 | 8355 | 5156 | 8560 | 4853 | 8743 | 4582 ; 8888 | 4339 | 9010 4119 9%2
6 | 6428 | 7660 | 6052 | 7961 | 5713 | B208 [ 5406 i 8413 | 5129 | 8584 | 48778730
7| 7974 | 6862 | 6877 | 7260 | 6514 | 7588 | 6182 | 7861 | 5878 | 8080 | 5600 8285
81 8021 | 65072 | 7622 | 6474 | 7248 | 6890 | G901 | 7237 | 6579 | 7531 B3I\ 7780
. g | 8660 | 5000 1 8277 | 5612 | 7908 | 6121 | 7557 | 6540 | 7228 | 6011 ~0g197| 7220
10 | 9182 | 3961 | 5836 | 4684 | 8486 | 5200 | 8146 | 5801 | 7813 | 6235 a507 | 8607
11 | 8580°| 2868 | 9200 | 3701 | 8978 | 4404 | 8660 | 5000 | 8346 | 5504 ¢ 3040 5946
12 | 0848 | 1736 | 0635 | 2675 | 9378 | 3473 | 5096 | 4154 | 8806 [ AN} 5516 | 5243
13 | 9833 | 058! | 9868 : 1618 | 9681 | 2507 | 0450 , 3271 | 9195 {3930 8929 | 4502
14| — | — | 9985 | 0541 { 9885 | 1514 | 9718 © 2358 § G5RLN 3090 | 9279 | 3729
i3 | — — — — | ons7 | o506 | 9808 | 1423 {9740 | 2225 | 9562 2928
6, — | — § — | — | — | — |o9esy| 0476 \8D00 | 1342 | 9776 | 2107
17| — -} — — | = - 0980 | 0449 [ 5919 | 1270
sl — | — | = — i = -} — e — L — |oeer|oan
Values of
78 82 86 ° 90 04 98
E :
sing |eosine| sine lcc-si.ne gine [egsine| sine |cosine| sine- |cosine| sine |cosine
1} 0805 | 9968 | 0765 | 0971 ﬂ?gﬂ 9573 | 0808 | 9976 | 0668 | 9878 | 0641 | 0879
2 | 1604 | 0871 | 1626 | 9883,|(1456 1 9893 | 1392 | 9503 1333 | 9911 | 1279 | 9918
3| 2393 | 9709 | 2279 | 97 9174 | 9761 [-2079 | 9781 | 1992 | 9800 ] 1912 : DE1E
4 | 3167 | n4es | 2017 | B534N| 2881 | 9576 | 2756 | 9613 | 2642 9645 | 2537 | 9673
B | 3920 | 9200 { 3735 ] 0275 | 3572 | B340 3420 | 0387 | 3280 | 0447 | 3151 | 9491
6 | 4647 | 9850 | 4487(/ 8962 | 4245 0054 | 4067 | 9135 | 3904 | 9206 | 3753 | 0269
7 | 5345 | 2452 | 5140y[78506 | 4804 | 8720 [ 4695 | 8820 4510 | 8523 | 4339 | %010
g | go07 | 7004 | 8767 | 3179 | 5518 | 8340 | 5299 ! 8480 5006 | 8604 | 4907 | 8713
o | 6631 | 7486/]\8862 | 7715 [ 6112 | 7915 [ 5878 | B09O | 5659 | 8244 [ 5455 8381
10| 72312 69%\ 5934 i 7205 | 6673 | 7448 | 6428 | V660 | 6107 | 7848 | 5081 | 8014
1E | 7748 | 632 7466 | 8653 | 719D | 6041 | 6847 7198 | 6708 | 7417 | 6482 : 7614
12 | 8230, (V6681 | 7053 | 6062 | 7687 | 6397 7431 i 6691 | 7188 | 6952 | 6957 | 7183
13 | 8660% 5000 | 8304 | 5436 | 8133 | 5819 ) 7880 | 6187 7637 | 6456 | 7403 | 6723
14 90857| 4287 g785 | 4777 1 8536 | 6209 | 8200 | 5592 | 8051 | 5932 | 7318 | 6235
15 |Ma360 | 3546 [ 6126 | 4091 | 8893 | 4572 | 3660 5000 | 8429 | 5381 | 8202 | 5721
16 | 9805 | 2782 | 9411 | 3380 | 9203 | 3011 | 8088 4384 | 8770 ! 4806 } 8651 | 5184
17 | o708 | 2000 | 0643 | 2650 | 0464 | 3229 | 9272 | 3746 | 9071 * 4208 | 8866 @ 4625
18 | 9027 | 1205 | 0817 | 1904 | 9675 | 2528 | 8511 3090 | 9332 . 3594 | 9144 | £048
19 | noog | 0403 | 9934 | 1147 | 9834 | 1816 | 9703 | 2419 | 0551 | 2963 | 0385 | 3454
20| — ; — 0993 | 0383 | 0040 | 1094 | 4848 | 1736 9728 | 2318 | 9587 | 2845
21 | — — — — | 9993 | 0365 | 9045 | 1045 | 9861 | 1663 | 9740 | 2225
2g | — — — — | 9994 | 0349 | 9950 | 1001 | 8872 1596
231 — b — | — 1= | — 1 — | — {09994 0334|9954 | 0960
2af —  — | — | =1 = | = —=1—=1—="1{ — 199950321
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TarLE 3. Harmonie analysis for p odd

Values of p
! 5 7 9 11 13 15
ko _ :
sine |eoaine| sine |cosine| sine | cosine| sine |eosine] sine |cosine| sine |cosino
I | 9511 | 3000 { 7818 | 6235 | 6428 | T660 | 5406 | 8413 | 4647 | 8855 | 4067 | 5135
2 | BBTS | 8090 | 9749 | 2225 | OB4B | 1736 | 908G | 4154 | 8230 | 5681 | 7431 | 6691
3 — — 4339 | BGI0 | 8660 | BOOO | 9898 | 1423 | 9927 | 1205 | 9511 | 3090
4 — — — 3420 | D397 | 75567 | 6549 | 9350 | 3546 | 9945 | 1045
5 P — — — — — — | 2817 | 8594 | 6631 | 7485 | 8660 | 5000
6 S - | - | — | — I — [ 2393|9709 | 5878 | 80Y0
7 P — — — — — —_ = — — 207,% CBI81
Values of 1 , ': A
i 17 &) 21 23 25 \. 27
E i h L
gine |cosine] sine |cosinef sine |cosine| sine Icosine sipe\| cosine{ sine |cosine
1| 3612 | 8325 | 3247 | 9458 | 2948 | 9650 | 2608 . 9629,/ ‘243’7 D086 | 2306 | 8730
2| @737 | 7300 | 6142 | 7801 | 5833 | 8262 | 5196 | 8544 \AB18 | 8763 | 4488 | 8936
3 5852 | 4457 | 8372 | 5468 | 7818 | 6235 | 7305 | (iNg6.| 6845 | 7200 | 6428 | TG60
4! 9057 | 0923 | 9694 | 2455 | 9309 | 3653 | 8879 » o1 B448 | K358 | 8021 | 5OV
6 7 0618 ; 2737 | 9966 | 0824 | 9972 | 0747 | 979k 12035 9511 | 3090 | 2182 | 3961
6 - 7080 . 6026 | 9158 | 4017 | 9749 | 2225 95@7"1 (682 | 9980 | 0628 | 9848 | 1736
¢ 7] 5264 8502 | 7357 | 6773 | 8660 | 5000 [H423 | 3349 | 9823 | 1874 | DH33 | 0581
8 | 1837 | 9830 | 4759 | 8795 | 6802 | 7331|8170 | 5767 | 9048 | 4258 | 9580 | 2868
9 — — 1646 | 0864 | 4339 | 90Ky 6311 | 7757 | 7708 6374 | 8660 | 5000
10| — — - | B0 . 9823 | 3984 | B172 | 5878 © 8000 | 7274 | BR62
11 — — — — — N 1362 | 9907 | 3681 | 9298 | b48B5 | 8355
/12 — — — — =& — — — 1253 | 9921 | 3420 | 9397
B — | — | — — | === = | — |ue]oem
o)
\\ v Values of p
. 29 EN 33 35 37 39 |
gine |eosine .m?re cozine| sine :cosine] sine |coai.ne gine !cosine gine |!cusi.ne
1| 21460 9’]{66, 013 | 9705 1 1803 : O8I0 | 1786 © 9839 | 1650 | 9856 | 1604 | O8TE
2| 4199 O'Tﬂ' 3944 | 5190 3717} 9284 | 3514 : 9362 | 3331+ 0429 | 3167 | Y485
3| 6052 ¢ 1| 5713 | 8208 | 5406 | 8413 | 5129 | 55%4 | 4877 . 8730 | 4647 | 8855
4 | 7622\ 6474 | 7248 | 6890 B6OG1 | 7237 | 6570 | 7531 { 8282 | 7780 | 6007 | 7404
5 | 4836, 4684 | 8486 | 5290 | 5146 | 5801 | 7818 | 6235 | 76507 | 6607 | 7212 | 6927
6, sﬁﬁhﬁ 2675 | 9378 | 3473 | 9096 | 4154 | 5806 | 4739 | 8515 | 5243 | 8230 | 5681
% | 9985 | 0541 | U885 | 1514 | 9718 | 2358 ¢ 9511 | 3090 | 9279 | 3720 | 9035 : 4287
8 VORGS | 1618 | 9987 | 0606 | 9989 | 0476 | 8909 | 1342 | 9776 | 2107 | 4605 , 2782
g | 9200 | 3701 | 9681 | 2507 | 9898 | 1423 | 9990 | 0449 | 9u91 | 0424 | 8927 : 1205
10 | 8277 | 5612 | 8978 | 4404 | 0450 | 3271 | 9746 © 2825 | 9919 & 1270 9942 0403
11 | 6877 | 7260 | 7008 | 6121 | 8660 ' 5000 | 9195 | 3930 | 9562 © 2528 | 2798 © 2000
12 | 5156 ; 8564 | 6514 | Vo888 | 7557 - 6549 | 8346 | 55090 { 8929 . 4502 | 8350 ] 36446
13| 2193 : 9477 | 4953 | 8743 1 4182 : TEG1 | T228 | 6911 | 8040 | 5948 | 8660 @ 5000
14 | 1081 | 9941 | 2994 | 9541 | 4582 | 8888 | 5878 | BOGO | 6019 ¢ 7220 | 7746 | 6324
15 — — 1012 | 9940 | 2817 | 9595 | 4339 | 9010 | 5600 ! 8285 | 6631 | 7485
16 J— —_ — — 0D51 | 9055 | 2660 | 9640 | 4119 | G912 | 5348 | 84562
17— — - — —— — 0896 | 9960 | 2520 | 9677 | 3920 | 9200
18 — _ _— — — — - — | 0848 | 9964 | 2393 | 8709
o — | - = =) - =1 = =1 =1 — | o805 9968




APFENDIX

TaABLE 3 (continued)

Velues of

73

43

45

47

49

51

cozine

cosine

gine ‘coﬁna

;
sine | cosine

ﬂneicuﬁne

B bt bt bt e e e bl b b : .
o 00 =17 O e Q8 bD = o D O =1 Q0 A O b b

ta
=1

22

o=l
N G

9593
;9576
0054
8340
1 7448
i 6397
. 5209
31l
2529
1094
0365
1816
3229
4572
5819
6941
7815
8720
43490
9781
9973

5903
9613
9135
8480
T660
6691
5692
4384
3000
1734
0349
LO45
2418
3746
5000
6157
7193
8090
8829
9397
9781
9976

2642
3004
5096
6107

8051
8770
9332
9728
9950
9994
9861
9551
9071
8429
7637
6708
3650
4530
3280)
| 1902
0663

1333 |

T188 -

9811
9645
9206
8604
7843
6932
5932
4806
3594
2318
1001
0334
1663
2863
4209
5381
6456
7405
.i%44
| BO25
0447
9800
9978

1279
2537
3753
4907
5981
6957
7818
8551
9144
9587
9872
9995
9954
9744
98585
8866
8202 | 5721
7403 , 6723
6482 ; 7614
5455 & 8381
4339 | 9010
3151 | 9481
1012 | 9516
0641 ' 9979

9918
06473
9269
8713
8014
7183
6235
5184
4048
2845(
1596
0321
MO0
2925
3454
4825

1229 |
2439
3612
4731
5778
6737
7594

8336
&hxp
0432
9788
9957
9095
0882
0618
9209
5660
TO80
7179
6269
5364
4180
3032
1837
0616

9924
9648
8325
8810
8162
“T390
6308
5524
4457
3324
21390
0923
0308
1534
2737
3808
5000
6028
6961
7791
8502
9085
9528
9830
9931

87

69

61

63

sine

sine

sine

]comne sine

! .
| eosine

cosine

gine |cosine

bl e
e 0 b D AD 08 T S Or e G b3

i
5]

1183
2349
3482
4666
5586
6528
7378

81951

8957
0267
9646
9390
2996
9960
D786
D473
2028
§4b6
7765
6966
6068
5085
4031
2021
1769
0592

889V NIL12
8294/ 5406
J6T6 | 6330

114
22€g>

7171
7910
8563
0096
9511
9801
9963
9996
8398
D571
9319
8844
8255
TH67T ¢
6762
5878
4917
3803
2817
1706
0571

100
2187
3247
4268
5237

6142

6973
1719
8372
8923
4365
9694
4205
9998
0066
0815
9544
9168
8660
8058
7357
6568
5608
4759
3763
2721
1646
0351

9939
9758
9453
9044
8519
7891
| 7168
8357
5469
4515
3506
2455
1374
0276
0926
1917
2088
4017
5000
5922
8773
7541
8218
4785
9265
9623
9864
9983

1063
2114
3141
4132
5077
5964
6783
7526
8183
5748
9213
0574
9827
9968
9996
90812
9714
407

8477
7806
71656
8382
5528
4411
3642
2631
1591
{1552

8093 |

0043
9774
9404
09106
2616
8027
7348
6585
5748
4846
3838
2887
1833
G798
0268
1327
2373
3392
4373
5304
6175
6976
7608
8333
: BRT4
9313
09645
9873
QARG

| 3041

9947
9789
9526
9163
8703
8150
7511
6793
6002
5148
| 4239

3285
2297
1284
0257
0772
1793
2705
3767
4700
5582
6406
7162
7841
8438
8945
9357
9670
9881

1028
2046

4005
4925
57904
6602
7339
7988
8573
9057
9445
9733
9917
9997
9970
98338
u8o1
9283 ;
8827
28297
7479
6979
6206
5367

4471
3628
2547
15830 -

0996
1981
2648
3884
4783
5633
6423
7159
7818
8400
8359
9308
626
9343
072
0897
9622
9749
9479
9115
8660
8119
1408
6802
5038
5214
4339
3420
246G

9950
9802
9556
9215
8782
8282
T660
6982
4235
5425
4562
3653
2708
1736
0747
0249
1243
2225
3185
4113
5000
5837
66817
7331
7971
2533
8010
i 9397
agq91
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Valuas of p

TAPLE 3 (continued)

67

a9

71

gine |cosine

sine |ecosine

pine |cosine

00 =1 O G M G bD

0065 | D953
1921 | 98i4
285% | 9582
3771 : 9262
4847 | BBLHS
5480 | 8365
8262 | 7797
6985 | 7156
7643 | 6448
8230 | 5681
8740 | 4860
0188 ; 3994
9511 | 3090
0764 | 2158
9927 | 1205
9097 | 0242
G974 | 0724
9857 | 1684
9649 | 2627
9350 | 3546
8944 | 4432
8445 | 5278
7944 | 8072
7323 | 6810
6631, | 7485
6878 | 8090
5070 | 8620
4214 : 9068
3319 | 9433

2393 | 9709

i445 | 9895
0433 | 9938,

G936
1865
2778
3664
4519
5334
6103
6813
7473
8063
3581
9024
9338
9669
9866
9955
9947
9931
2778
4539
H2186
8812
8331
7776
7153
34638
5725

3224
2893
[C3402
0469

9956
9825
9607
9305
8921
8458
7922
7315
8645
5916
5135
4308
3445
2550
1634
0708
0234
1170
2004
3001
3881
4727
5531
6287
6985,
7625
8199

4932 [ 8600
1096\ Ns123"

8466
9726
5901
9989

0909 | 9959
1811 | 9835
2698 | 9629
3562 | 9844
4397 | 8981
5196 | 8544
5951 | 8036
6657 | 7462
7308 | 6826
7593 | 6133
8424 | 5389
8579 | 4601
9260 | 3774
9565 | 2916
9791 © 2035
9935 § 1136
0997 | 0228
9977 | 0683
9878 | 158N
9688 ; 2478
0423 | 8349
2079 {4192
866G, 5000
810 | 5767
Y611 | 6456
6990 | 7151
8311 | 7757
5579 | 8299
4802 | 8772
3984 | 2172
3133 | 9496
2957 | 9742
1362 | 9967
0455 | 9990

19301

0884.
1761
2624
3466
4282
5064
5306
6503
7149
7730
8268
8733
9129
9454
9705 §

988@}.

8

B339 |

9802
9589

8940
8509
8011
7451
63323
6160
5440
4477
3878
3048:
2194
1324
0442

)

éneicuﬁne

sine

cosine

6961
9844
94650
9380
4037
8623
8142
1507
6092
6333
5624
4872
408"
3268
2410
1542
0683
0221
1104
1978
2837
3673
4481
5953
5985
8689
7302
7877
8301
8839
9217
9524
9756
9812
9590

G860
1713
25564
3375
4172
4938
5667

6354 fo
69954,

7588
~B115
{35285
)
0338
2611
85813
9942
5998
8679
BHET
9721
9484
9176
B8R0O
8359
7856
7296
66381
fG0L6
5307
4559
3777
2067
21356
1287
0430

9965
1860
Q686
9444
3135
8763
8329
7837
7200
6691
6046
5358

2 4633
. 3875
© 3090
. 2284
3¢ 1461
i DBLB
10209
;1043

1874
2639
3486
4258
5000
5707
6374
8997
75870
8090
85654
8957
4298
9573
§781
9921
5991

e &




APPENDIX

TABLE 3 (continued)

Values of p

75

=

L= LS -l sl IO o

77

81

83

&85

87

sine |cosine

sine |cosing| sine |coa:'ne

gine |cosine

sina

cosine

w
=3
o
=)

9898 |
9749 -

8019 |

9867
QH6Y
9702
9472
9178
8825
8413
T944,
7422
G851
6235
58577
4882
4154

L 5309
| 2621

1526
1018
0204
0612
1423
2225
3012
3720
4522
5234
5911
6549
7143
7600
8185
BBZ6Y
Q0 LN
93g3
O595

2026{ 9793

1@2n

9825
9992

0775 | 9970 | 0756
1545 | 9880 | 1508 |
2506 | 9730 [ 2252
3053 | 9522 | 2082
§782 | 9257 | 3605
4488 | 8636 | 4387
5167 | 8562 | 5054
5815 | 8136 | 5693 .
6428 | 7060 | 6208
7002 | 7139 | 6868
7534 | 6575 | 7308
8021 ; 5972 | 7885
8460 | 5332 | 8328
8848 | 4660 | 8723
9182 | 306) | 0068
9461 | 3237 | 9360
9654 | 2494 | 9600
9848 | 1736 | 9784
0953 | 0968 J\0912
9998 | 0104} 9984
9983 | 058l | 9098
9908 | 1353 | 9955
a77ad 117 | 0855

2868 | 9699

0320 | 3602 | 9487
\d022 | 4314 | 9221
8660 | 5000 | 8901
8247 | 5656 | 8531
7784 | 6278 | 8112
7274 | 6862 | 7647
6720 | 7406 | 7138
6126 | 7904 | 6585
5495 | 8355 | 6000
1831 | 8756 | 5377
4138 | 9104 | 4724
3420 | 9397 | 4044
2682 | 9634 | 3341
1927 | 8813 | 2619
1161 | 9932 | 1881
0388 | 9992 | 1133

— | 0378

{ 9971

9886
9743
9345
9292
8986
8629
8222
7767
7269
6729
150
55369

4891
A9

2519

/2801

2067
1321
0667
0189
0945
1694
2436
3162
3871
4567
5217
5847
6444
7004
7524
8GO0
8431
8314
4146 |
3425
4661
9821
0936
9893

739

8197

1473
2189
2914
3612
4201
4847
5875
8173 ¢
677
926
RI52

8598
8952
5256
9511
713
9862
9957
9908
9985
9916
9794
9618
9390
9110
8751
8403
7980
7513
7005
8450
5878
6264
4622
3955 |
3265 |
2558
1837
1107
0370

9973
9891
9745
9546
9325

90332
8603

202
567

INT390

6872
6317
a727
5106
4457
3784
3090
2379
1656
09223
0185
0554
12496
2014
2737
3439
4124
4786
5421
6024
6599
7136
7634
8040
8502
8368
94185
04452
9647
9830
0939
9993

0722
1439

21508

2840
2438
1199
4544
5462
6052

6610 ;

7136
7622
8069
8474
8835
8150
9417
9635
9803
9920
9935
9098
9959
9865
9726
9533
9290
8993
8660
8277
7850
7383
6877
6335
3760
5156
4524
3568
4193
2501
1796
1081
0361

2674
U85

N\u586
89355
9076
8743
8377
7861
7303
7007
474
5967
5309
4634
4034
3364
2675
1073
1261
0541
0181
0902
1618
2326
3021
3701

8018
9221
9477
9682
9837
9941
9903

09766

4362
AO00
5612 !
6194 -
6745 :
7260
TR
8174 .
8569 |
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TABLE 3 (continued}

Vealues of p
. 89 91 g3 95 a7 99
gine |cosins| sine |cosine| sine |cosine| sine |cosine| sine :ecoains| sine cogsine
1} 0705 | 9975 { 0690 | 9976 | 0675 ; 9977 | 0041 | 0978 [ 0647 | 9979 | 0634 YOG
911407 | 9900 | 1377 | 9005 | 1347 + 9908 | 1310 | 9013 | 1202 : 0916 | 1266 . 0320
3| 2102 | 9777 | 2087 i 6786 | 2013 © 9795 [ 1971 | 9804 | 1931 6812 ] 1893 uslY
4 | 2787 | 0604 | 2727 | 9621 { 2670 | V637 | 2615 | 9652 | 2562 & 0666 | 2511 1 9679
5 | 3457 | 0383 | 3384 | 0410 | 3314 | 9435 | 3247 | 0438 | 3182 | 9480 § 3120 | 9501
6 | 4110 | 91168 | 4025 | 9154 | 2044 | 9130 | 3865 | 9223 | 3780 | 9254 | 3317 | 9284
7 | 4743 | 8804 | 4647 | 8855 | 4555 | 8902 | 4486 | 8047 | 4380 | 8090,\4203 | 9025
8 | 5352 | 8447 | 5247 | 8513 | 5146 | 8575 | 5048 : 8633 | 4953 | 8687\ ARG2 | 8738
©9 ] 5935 | 8048 | 5822 | 8131 | 5713 | 8208 | 6607 | 8280 | 5505 | §348 (5408 | 8413
10 | 6483 | 7610 | 6369 | 7710 | 6254 | 7303 | 6142 | 7801 | 6034 [ 7974 | 5920 | 3053
11 | 7008 | 7133 | 8886 : 7252 | 6766 | 7363 | 6650 | T468 | 653TNNTHET | 6428 ° 7660
12 | 7494 | 6621 | 7370 | 6760 | 7248 | 6890 | 7129 | 7012 | 7Hdd F128 | 8901 | 7237
13 | 7042 ' 8076 | TR1G | 6235 | 7697 | 6385 | 7877 | 6526 17480 | 6659 ) 7346 | GVHS
14 | 8351 | 5501 | 8230 | 5681 { 8110 | 5850 | 7992 | 60IW\T87G | 6162 | 7761 | 6306
15 | 8718 | 4808 | 8602 - 5000 | 8486 | 5290 | 8372 | 5264175258 | 5640 | 8146 | 5301
16 | 9042 | 4271 | 8933 | 4494 | 8324 | 4705 | 8715 | 4DGE | 8606 | 5003 | 8497 | 5272
17 | 9321 | s622.} 9222 | 3867 | 6122 | 4008 | v020/Pd318 | 8O1T | 4625 | 8815 | 4723
18 | 9563 | 2056 | 9467 | 3221 | 9373 | 3473 | 92 3712 | 9192 ¢ 3030 | 9096 | 4154
19 | 9738 | 2274 | 0667 | 2560 | 9501 | 2832 \Y5TI"| 3090 | 9427 | 3336 | 0341 ; 3540
20 8874 | 1682 | 0820 © 1887 1 9760 | 2178 { 9694 | 2455 { 9623 | 2718 ] 0540 | 2560
21 | 9961 : 0881 | 9927 | 1205 | 9885 | 1514 |'0S35 | 1800 | 0779 | 2090 | 9718 | 2358
22 10998 | 0177 | 9957 | 0518 | 9964 | Q&P { 5933 | 1155 | 98094 | 1452 | Y848 | 1736
|23 | 9986 | 0520 | 9999 | 0173 | 9999 |20169 | 0088 | 0436 | 9967 | 0809 | 9938 | 1108
24 | 0024 | 1232 | 9963 | 0862 | 9087\N0506 [ 9090 | 0165 | 8399 | 0162 | 9989 ; 0476
o5 | 0812 | 1929 | 9880 | 1547 | 9984 1130 | 9966 | 05826 | 9988 | 0486 { 9999 | 0159
26 | 9652 | 2617 | 9749 | 2225 [~6328 | 1847 | 9889 | 1483 | 0036 | 1131 [ 6269 | 0783
97 | 9443 1 32971 | 9573 ; 2803 M681 | 2507 | 9770 | 2133 | 9842 | 1772 | 9893 | 1423
28 | 0187 | 2040 § 9350 | 3546\[ 9439 | 3154 | 9608 | 2774 | 9706 | 2405 | 9788 | 2048
20 | 8886 | 4587 | 5083 [(4137| 9255 | 3738 | 9403 | 3403 | 0530 | 3028 | 0638 | 2665
20 | 8540 | 5202 | 8778 oo | 8078 | 4404 ] 0158 ; 4017 | 9314 | 3630 | 9450 | 3271
31 | 8152 | 5792 | 8421} 5393 { 680 | 5000 | 8872 | 4613 | 0050 | 4234 1 9224 ¢ 38EI
32 | 7728 | 6352 | 80257| 5981 | 3203 | 5573 | 8548 | 5180 | 8766 | 4812 | 8060 ; 4441
"ag | 7256 | 6881 {1508 | 6501 | 7908 | 6121 | B186 | 5743 | 8436 | 636D | BEGO | 5000
a4 | 752 | 139182 | 7010 | 7478 | 6641 | 7788 1 6272 { 807 | BO04 | 8326 | 5530
35 | B215 | 78844 6631 | 7485 | 7011 | 7131 | 7357 6773 [ 7672 | 6414 | 7958 | 605G
36 | 5647 [\e9a3 [ 6099 | 7925 | 6514 | 7588 | 6863 | 7244 [ 7241 | B89T | 7557 8549
37 565;~\8631 5538 ¢ 8227 | 5087 | 8010 | 6400 | 7684 | 6779 | 7351 | 7127 | 7015
38 | 44801 8965 | 4050 | 8689 | 5432 | ¥306 | 5878 | BOBO | 6289 7776 | 6668 | 7453 |
39 7/3796 | 9256 | 4330 | 0010 | 4853 | 8743 | 5330 | 8461 § 5773 8166 | 6182 | 7861
4003124 | 9500 | 3707 | 9288 | 4252 } 9051 | 4759 | 8705 | 5282 | 8522 | 5671 8237
41V 2446 | 0696 | 3057 | 9521 | 3631 | 03181 4168 | DOGD [ 4869 | 8343 ) 5187 RER0
4971 1756 | 0845 | 2393 | 8709 | 2004 | 9541 | 3558 | 9346 | 4087 | 0127 | 4582 8848
43 | 1057 | 0944 | 1718 | 0851 | 2242 | 0722 | 2933 | 9560 | 3488 | 9372 [ 4009 3 9161
44 | 0353 | 0004 | 1034 | 0946 | 1681 | 9858 | 2204 | 9738 | 2874 | 9578 3420 | 9397
45 ] — —. | 0345 | 9994 | 1012 | 0049 | 1646 | 0864 | 2248 | 9744 | 2817 | 9595
46 | — — —_— — | o238 | ¢094 | 0990 | 9951 | 1612 | 9849 | 2203 | BY54
47 — — — —_ — — {0331 | 9995 | 0970 | 9953 | 1580 | 9874
48| — — — — — — — — | 0324 | D995 | 0951 | 9955
49 | — —_— — — — — —_— — — | — 10817 | 9995
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